| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
igb: clean up in all error paths when enabling SR-IOV
After commit 50f303496d92 ("igb: Enable SR-IOV after reinit"), removing
the igb module could hang or crash (depending on the machine) when the
module has been loaded with the max_vfs parameter set to some value != 0.
In case of one test machine with a dual port 82580, this hang occurred:
[ 232.480687] igb 0000:41:00.1: removed PHC on enp65s0f1
[ 233.093257] igb 0000:41:00.1: IOV Disabled
[ 233.329969] pcieport 0000:40:01.0: AER: Multiple Uncorrected (Non-Fatal) err0
[ 233.340302] igb 0000:41:00.0: PCIe Bus Error: severity=Uncorrected (Non-Fata)
[ 233.352248] igb 0000:41:00.0: device [8086:1516] error status/mask=00100000
[ 233.361088] igb 0000:41:00.0: [20] UnsupReq (First)
[ 233.368183] igb 0000:41:00.0: AER: TLP Header: 40000001 0000040f cdbfc00c c
[ 233.376846] igb 0000:41:00.1: PCIe Bus Error: severity=Uncorrected (Non-Fata)
[ 233.388779] igb 0000:41:00.1: device [8086:1516] error status/mask=00100000
[ 233.397629] igb 0000:41:00.1: [20] UnsupReq (First)
[ 233.404736] igb 0000:41:00.1: AER: TLP Header: 40000001 0000040f cdbfc00c c
[ 233.538214] pci 0000:41:00.1: AER: can't recover (no error_detected callback)
[ 233.538401] igb 0000:41:00.0: removed PHC on enp65s0f0
[ 233.546197] pcieport 0000:40:01.0: AER: device recovery failed
[ 234.157244] igb 0000:41:00.0: IOV Disabled
[ 371.619705] INFO: task irq/35-aerdrv:257 blocked for more than 122 seconds.
[ 371.627489] Not tainted 6.4.0-dirty #2
[ 371.632257] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this.
[ 371.641000] task:irq/35-aerdrv state:D stack:0 pid:257 ppid:2 f0
[ 371.650330] Call Trace:
[ 371.653061] <TASK>
[ 371.655407] __schedule+0x20e/0x660
[ 371.659313] schedule+0x5a/0xd0
[ 371.662824] schedule_preempt_disabled+0x11/0x20
[ 371.667983] __mutex_lock.constprop.0+0x372/0x6c0
[ 371.673237] ? __pfx_aer_root_reset+0x10/0x10
[ 371.678105] report_error_detected+0x25/0x1c0
[ 371.682974] ? __pfx_report_normal_detected+0x10/0x10
[ 371.688618] pci_walk_bus+0x72/0x90
[ 371.692519] pcie_do_recovery+0xb2/0x330
[ 371.696899] aer_process_err_devices+0x117/0x170
[ 371.702055] aer_isr+0x1c0/0x1e0
[ 371.705661] ? __set_cpus_allowed_ptr+0x54/0xa0
[ 371.710723] ? __pfx_irq_thread_fn+0x10/0x10
[ 371.715496] irq_thread_fn+0x20/0x60
[ 371.719491] irq_thread+0xe6/0x1b0
[ 371.723291] ? __pfx_irq_thread_dtor+0x10/0x10
[ 371.728255] ? __pfx_irq_thread+0x10/0x10
[ 371.732731] kthread+0xe2/0x110
[ 371.736243] ? __pfx_kthread+0x10/0x10
[ 371.740430] ret_from_fork+0x2c/0x50
[ 371.744428] </TASK>
The reproducer was a simple script:
#!/bin/sh
for i in `seq 1 5`; do
modprobe -rv igb
modprobe -v igb max_vfs=1
sleep 1
modprobe -rv igb
done
It turned out that this could only be reproduce on 82580 (quad and
dual-port), but not on 82576, i350 and i210. Further debugging showed
that igb_enable_sriov()'s call to pci_enable_sriov() is failing, because
dev->is_physfn is 0 on 82580.
Prior to commit 50f303496d92 ("igb: Enable SR-IOV after reinit"),
igb_enable_sriov() jumped into the "err_out" cleanup branch. After this
commit it only returned the error code.
So the cleanup didn't take place, and the incorrect VF setup in the
igb_adapter structure fooled the igb driver into assuming that VFs have
been set up where no VF actually existed.
Fix this problem by cleaning up again if pci_enable_sriov() fails. |
| In the Linux kernel, the following vulnerability has been resolved:
net: dsa: realtek: fix out-of-bounds access
The probe function sets priv->chip_data to (void *)priv + sizeof(*priv)
with the expectation that priv has enough trailing space.
However, only realtek-smi actually allocated this chip_data space.
Do likewise in realtek-mdio to fix out-of-bounds accesses.
These accesses likely went unnoticed so far, because of an (unused)
buf[4096] member in struct realtek_priv, which caused kmalloc to
round up the allocated buffer to a big enough size, so nothing of
value was overwritten. With a different allocator (like in the barebox
bootloader port of the driver) or with KASAN, the memory corruption
becomes quickly apparent. |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix missed ses refcounting
Use new cifs_smb_ses_inc_refcount() helper to get an active reference
of @ses and @ses->dfs_root_ses (if set). This will prevent
@ses->dfs_root_ses of being put in the next call to cifs_put_smb_ses()
and thus potentially causing an use-after-free bug. |
| In the Linux kernel, the following vulnerability has been resolved:
s390/dcssblk: fix kernel crash with list_add corruption
Commit fb08a1908cb1 ("dax: simplify the dax_device <-> gendisk
association") introduced new logic for gendisk association, requiring
drivers to explicitly call dax_add_host() and dax_remove_host().
For dcssblk driver, some dax_remove_host() calls were missing, e.g. in
device remove path. The commit also broke error handling for out_dax case
in device add path, resulting in an extra put_device() w/o the previous
get_device() in that case.
This lead to stale xarray entries after device add / remove cycles. In the
case when a previously used struct gendisk pointer (xarray index) would be
used again, because blk_alloc_disk() happened to return such a pointer, the
xa_insert() in dax_add_host() would fail and go to out_dax, doing the extra
put_device() in the error path. In combination with an already flawed error
handling in dcssblk (device_register() cleanup), which needs to be
addressed in a separate patch, this resulted in a missing device_del() /
klist_del(), and eventually in the kernel crash with list_add corruption on
a subsequent device_add() / klist_add().
Fix this by adding the missing dax_remove_host() calls, and also move the
put_device() in the error path to restore the previous logic. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: Fix MSDU buffer types handling in RX error path
Currently, packets received on the REO exception ring from
unassociated peers are of MSDU buffer type, while the driver expects
link descriptor type packets. These packets are not parsed further due
to a return check on packet type in ath12k_hal_desc_reo_parse_err(),
but the associated skb is not freed. This may lead to kernel
crashes and buffer leaks.
Hence to fix, update the RX error handler to explicitly drop
MSDU buffer type packets received on the REO exception ring.
This prevents further processing of invalid packets and ensures
stability in the RX error handling path.
Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.4.1-00199-QCAHKSWPL_SILICONZ-1 |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/hns: Fix refcount leak in hns_roce_mmap
rdma_user_mmap_entry_get_pgoff() takes the reference.
Add missing rdma_user_mmap_entry_put() to release the reference.
Acked-by Haoyue Xu <[email protected]> |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Avoid UBSAN error on true_sectors_per_clst()
syzbot reported UBSAN error as below:
[ 76.901829][ T6677] ================================================================================
[ 76.903908][ T6677] UBSAN: shift-out-of-bounds in fs/ntfs3/super.c:675:13
[ 76.905363][ T6677] shift exponent -247 is negative
This patch avoid this error. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix race when deleting free space root from the dirty cow roots list
When deleting the free space tree we are deleting the free space root
from the list fs_info->dirty_cowonly_roots without taking the lock that
protects it, which is struct btrfs_fs_info::trans_lock.
This unsynchronized list manipulation may cause chaos if there's another
concurrent manipulation of this list, such as when adding a root to it
with ctree.c:add_root_to_dirty_list().
This can result in all sorts of weird failures caused by a race, such as
the following crash:
[337571.278245] general protection fault, probably for non-canonical address 0xdead000000000108: 0000 [#1] PREEMPT SMP PTI
[337571.278933] CPU: 1 PID: 115447 Comm: btrfs Tainted: G W 6.4.0-rc6-btrfs-next-134+ #1
[337571.279153] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[337571.279572] RIP: 0010:commit_cowonly_roots+0x11f/0x250 [btrfs]
[337571.279928] Code: 85 38 06 00 (...)
[337571.280363] RSP: 0018:ffff9f63446efba0 EFLAGS: 00010206
[337571.280582] RAX: ffff942d98ec2638 RBX: ffff9430b82b4c30 RCX: 0000000449e1c000
[337571.280798] RDX: dead000000000100 RSI: ffff9430021e4900 RDI: 0000000000036070
[337571.281015] RBP: ffff942d98ec2000 R08: ffff942d98ec2000 R09: 000000000000015b
[337571.281254] R10: 0000000000000009 R11: 0000000000000001 R12: ffff942fe8fbf600
[337571.281476] R13: ffff942dabe23040 R14: ffff942dabe20800 R15: ffff942d92cf3b48
[337571.281723] FS: 00007f478adb7340(0000) GS:ffff94349fa40000(0000) knlGS:0000000000000000
[337571.281950] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[337571.282184] CR2: 00007f478ab9a3d5 CR3: 000000001e02c001 CR4: 0000000000370ee0
[337571.282416] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[337571.282647] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[337571.282874] Call Trace:
[337571.283101] <TASK>
[337571.283327] ? __die_body+0x1b/0x60
[337571.283570] ? die_addr+0x39/0x60
[337571.283796] ? exc_general_protection+0x22e/0x430
[337571.284022] ? asm_exc_general_protection+0x22/0x30
[337571.284251] ? commit_cowonly_roots+0x11f/0x250 [btrfs]
[337571.284531] btrfs_commit_transaction+0x42e/0xf90 [btrfs]
[337571.284803] ? _raw_spin_unlock+0x15/0x30
[337571.285031] ? release_extent_buffer+0x103/0x130 [btrfs]
[337571.285305] reset_balance_state+0x152/0x1b0 [btrfs]
[337571.285578] btrfs_balance+0xa50/0x11e0 [btrfs]
[337571.285864] ? __kmem_cache_alloc_node+0x14a/0x410
[337571.286086] btrfs_ioctl+0x249a/0x3320 [btrfs]
[337571.286358] ? mod_objcg_state+0xd2/0x360
[337571.286577] ? refill_obj_stock+0xb0/0x160
[337571.286798] ? seq_release+0x25/0x30
[337571.287016] ? __rseq_handle_notify_resume+0x3ba/0x4b0
[337571.287235] ? percpu_counter_add_batch+0x2e/0xa0
[337571.287455] ? __x64_sys_ioctl+0x88/0xc0
[337571.287675] __x64_sys_ioctl+0x88/0xc0
[337571.287901] do_syscall_64+0x38/0x90
[337571.288126] entry_SYSCALL_64_after_hwframe+0x72/0xdc
[337571.288352] RIP: 0033:0x7f478aaffe9b
So fix this by locking struct btrfs_fs_info::trans_lock before deleting
the free space root from that list. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: fix NULL pointer dereference on fastopen early fallback
In case of early fallback to TCP, subflow_syn_recv_sock() deletes
the subflow context before returning the newly allocated sock to
the caller.
The fastopen path does not cope with the above unconditionally
dereferencing the subflow context. |
| In the Linux kernel, the following vulnerability has been resolved:
spmi: Add a check for remove callback when removing a SPMI driver
When removing a SPMI driver, there can be a crash due to NULL pointer
dereference if it does not have a remove callback defined. This is
one such call trace observed when removing the QCOM SPMI PMIC driver:
dump_backtrace.cfi_jt+0x0/0x8
dump_stack_lvl+0xd8/0x16c
panic+0x188/0x498
__cfi_slowpath+0x0/0x214
__cfi_slowpath+0x1dc/0x214
spmi_drv_remove+0x16c/0x1e0
device_release_driver_internal+0x468/0x79c
driver_detach+0x11c/0x1a0
bus_remove_driver+0xc4/0x124
driver_unregister+0x58/0x84
cleanup_module+0x1c/0xc24 [qcom_spmi_pmic]
__do_sys_delete_module+0x3ec/0x53c
__arm64_sys_delete_module+0x18/0x28
el0_svc_common+0xdc/0x294
el0_svc+0x38/0x9c
el0_sync_handler+0x8c/0xf0
el0_sync+0x1b4/0x1c0
If a driver has all its resources allocated through devm_() APIs and
does not need any other explicit cleanup, it would not require a
remove callback to be defined. Hence, add a check for remove callback
presence before calling it when removing a SPMI driver. |
| In the Linux kernel, the following vulnerability has been resolved:
mmc: mxcmmc: fix return value check of mmc_add_host()
mmc_add_host() may return error, if we ignore its return value, the memory
that allocated in mmc_alloc_host() will be leaked and it will lead a kernel
crash because of deleting not added device in the remove path.
So fix this by checking the return value and goto error path which will call
mmc_free_host(). |
| In the Linux kernel, the following vulnerability has been resolved:
blk-cgroup: hold queue_lock when removing blkg->q_node
When blkg is removed from q->blkg_list from blkg_free_workfn(), queue_lock
has to be held, otherwise, all kinds of bugs(list corruption, hard lockup,
..) can be triggered from blkg_destroy_all(). |
| In the Linux kernel, the following vulnerability has been resolved:
drm/fbdev-generic: prohibit potential out-of-bounds access
The fbdev test of IGT may write after EOF, which lead to out-of-bound
access for drm drivers with fbdev-generic. For example, run fbdev test
on a x86+ast2400 platform, with 1680x1050 resolution, will cause the
linux kernel hang with the following call trace:
Oops: 0000 [#1] PREEMPT SMP PTI
[IGT] fbdev: starting subtest eof
Workqueue: events drm_fb_helper_damage_work [drm_kms_helper]
[IGT] fbdev: starting subtest nullptr
RIP: 0010:memcpy_erms+0xa/0x20
RSP: 0018:ffffa17d40167d98 EFLAGS: 00010246
RAX: ffffa17d4eb7fa80 RBX: ffffa17d40e0aa80 RCX: 00000000000014c0
RDX: 0000000000001a40 RSI: ffffa17d40e0b000 RDI: ffffa17d4eb80000
RBP: ffffa17d40167e20 R08: 0000000000000000 R09: ffff89522ecff8c0
R10: ffffa17d4e4c5000 R11: 0000000000000000 R12: ffffa17d4eb7fa80
R13: 0000000000001a40 R14: 000000000000041a R15: ffffa17d40167e30
FS: 0000000000000000(0000) GS:ffff895257380000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffa17d40e0b000 CR3: 00000001eaeca006 CR4: 00000000001706e0
Call Trace:
<TASK>
? drm_fbdev_generic_helper_fb_dirty+0x207/0x330 [drm_kms_helper]
drm_fb_helper_damage_work+0x8f/0x170 [drm_kms_helper]
process_one_work+0x21f/0x430
worker_thread+0x4e/0x3c0
? __pfx_worker_thread+0x10/0x10
kthread+0xf4/0x120
? __pfx_kthread+0x10/0x10
ret_from_fork+0x2c/0x50
</TASK>
CR2: ffffa17d40e0b000
---[ end trace 0000000000000000 ]---
The is because damage rectangles computed by
drm_fb_helper_memory_range_to_clip() function is not guaranteed to be
bound in the screen's active display area. Possible reasons are:
1) Buffers are allocated in the granularity of page size, for mmap system
call support. The shadow screen buffer consumed by fbdev emulation may
also choosed be page size aligned.
2) The DIV_ROUND_UP() used in drm_fb_helper_memory_range_to_clip()
will introduce off-by-one error.
For example, on a 16KB page size system, in order to store a 1920x1080
XRGB framebuffer, we need allocate 507 pages. Unfortunately, the size
1920*1080*4 can not be divided exactly by 16KB.
1920 * 1080 * 4 = 8294400 bytes
506 * 16 * 1024 = 8290304 bytes
507 * 16 * 1024 = 8306688 bytes
line_length = 1920*4 = 7680 bytes
507 * 16 * 1024 / 7680 = 1081.6
off / line_length = 507 * 16 * 1024 / 7680 = 1081
DIV_ROUND_UP(507 * 16 * 1024, 7680) will yeild 1082
memcpy_toio() typically issue the copy line by line, when copy the last
line, out-of-bound access will be happen. Because:
1082 * line_length = 1082 * 7680 = 8309760, and 8309760 > 8306688
Note that userspace may still write to the invisiable area if a larger
buffer than width x stride is exposed. But it is not a big issue as
long as there still have memory resolve the access if not drafting so
far.
- Also limit the y1 (Daniel)
- keep fix patch it to minimal (Daniel)
- screen_size is page size aligned because of it need mmap (Thomas)
- Adding fixes tag (Thomas) |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: s390: pv: fix index value of replaced ASCE
The index field of the struct page corresponding to a guest ASCE should
be 0. When replacing the ASCE in s390_replace_asce(), the index of the
new ASCE should also be set to 0.
Having the wrong index might lead to the wrong addresses being passed
around when notifying pte invalidations, and eventually to validity
intercepts (VM crash) if the prefix gets unmapped and the notifier gets
called with the wrong address. |
| In the Linux kernel, the following vulnerability has been resolved:
erofs: Fix pcluster memleak when its block address is zero
syzkaller reported a memleak:
https://syzkaller.appspot.com/bug?id=62f37ff612f0021641eda5b17f056f1668aa9aed
unreferenced object 0xffff88811009c7f8 (size 136):
...
backtrace:
[<ffffffff821db19b>] z_erofs_do_read_page+0x99b/0x1740
[<ffffffff821dee9e>] z_erofs_readahead+0x24e/0x580
[<ffffffff814bc0d6>] read_pages+0x86/0x3d0
...
syzkaller constructed a case: in z_erofs_register_pcluster(),
ztailpacking = false and map->m_pa = zero. This makes pcl->obj.index be
zero although pcl is not a inline pcluster.
Then following path adds refcount for grp, but the refcount won't be put
because pcl is inline.
z_erofs_readahead()
z_erofs_do_read_page() # for another page
z_erofs_collector_begin()
erofs_find_workgroup()
erofs_workgroup_get()
Since it's illegal for the block address of a non-inlined pcluster to
be zero, add check here to avoid registering the pcluster which would
be leaked. |
| In the Linux kernel, the following vulnerability has been resolved:
mtd: rawnand: fsl_upm: Fix an off-by one test in fun_exec_op()
'op-cs' is copied in 'fun->mchip_number' which is used to access the
'mchip_offsets' and the 'rnb_gpio' arrays.
These arrays have NAND_MAX_CHIPS elements, so the index must be below this
limit.
Fix the sanity check in order to avoid the NAND_MAX_CHIPS value. This
would lead to out-of-bound accesses. |
| In the Linux kernel, the following vulnerability has been resolved:
ubifs: Fix memleak when insert_old_idx() failed
Following process will cause a memleak for copied up znode:
dirty_cow_znode
zn = copy_znode(c, znode);
err = insert_old_idx(c, zbr->lnum, zbr->offs);
if (unlikely(err))
return ERR_PTR(err); // No one refers to zn.
Fetch a reproducer in [Link].
Function copy_znode() is split into 2 parts: resource allocation
and znode replacement, insert_old_idx() is split in similar way,
so resource cleanup could be done in error handling path without
corrupting metadata(mem & disk).
It's okay that old index inserting is put behind of add_idx_dirt(),
old index is used in layout_leb_in_gaps(), so the two processes do
not depend on each other. |
| In the Linux kernel, the following vulnerability has been resolved:
accel/ivpu: Fix page fault in ivpu_bo_unbind_all_bos_from_context()
Don't add BO to the vdev->bo_list in ivpu_gem_create_object().
When failure happens inside drm_gem_shmem_create(), the BO is not
fully created and ivpu_gem_bo_free() callback will not be called
causing a deleted BO to be left on the list. |
| In the Linux kernel, the following vulnerability has been resolved:
fs: drop peer group ids under namespace lock
When cleaning up peer group ids in the failure path we need to make sure
to hold on to the namespace lock. Otherwise another thread might just
turn the mount from a shared into a non-shared mount concurrently. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: turn quotas off if mount failed after enabling quotas
Yi found during a review of the patch "ext4: don't BUG on inconsistent
journal feature" that when ext4_mark_recovery_complete() returns an error
value, the error handling path does not turn off the enabled quotas,
which triggers the following kmemleak:
================================================================
unreferenced object 0xffff8cf68678e7c0 (size 64):
comm "mount", pid 746, jiffies 4294871231 (age 11.540s)
hex dump (first 32 bytes):
00 90 ef 82 f6 8c ff ff 00 00 00 00 41 01 00 00 ............A...
c7 00 00 00 bd 00 00 00 0a 00 00 00 48 00 00 00 ............H...
backtrace:
[<00000000c561ef24>] __kmem_cache_alloc_node+0x4d4/0x880
[<00000000d4e621d7>] kmalloc_trace+0x39/0x140
[<00000000837eee74>] v2_read_file_info+0x18a/0x3a0
[<0000000088f6c877>] dquot_load_quota_sb+0x2ed/0x770
[<00000000340a4782>] dquot_load_quota_inode+0xc6/0x1c0
[<0000000089a18bd5>] ext4_enable_quotas+0x17e/0x3a0 [ext4]
[<000000003a0268fa>] __ext4_fill_super+0x3448/0x3910 [ext4]
[<00000000b0f2a8a8>] ext4_fill_super+0x13d/0x340 [ext4]
[<000000004a9489c4>] get_tree_bdev+0x1dc/0x370
[<000000006e723bf1>] ext4_get_tree+0x1d/0x30 [ext4]
[<00000000c7cb663d>] vfs_get_tree+0x31/0x160
[<00000000320e1bed>] do_new_mount+0x1d5/0x480
[<00000000c074654c>] path_mount+0x22e/0xbe0
[<0000000003e97a8e>] do_mount+0x95/0xc0
[<000000002f3d3736>] __x64_sys_mount+0xc4/0x160
[<0000000027d2140c>] do_syscall_64+0x3f/0x90
================================================================
To solve this problem, we add a "failed_mount10" tag, and call
ext4_quota_off_umount() in this tag to release the enabled qoutas. |