Search Results (16669 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2023-54030 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: io_uring/net: don't overflow multishot recv Don't allow overflowing multishot recv CQEs, it might get out of hand, hurt performance, and in the worst case scenario OOM the task.
CVE-2023-54027 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: iio: core: Prevent invalid memory access when there is no parent Commit 813665564b3d ("iio: core: Convert to use firmware node handle instead of OF node") switched the kind of nodes to use for label retrieval in device registration. Probably an unwanted change in that commit was that if the device has no parent then NULL pointer is accessed. This is what happens in the stock IIO dummy driver when a new entry is created in configfs: # mkdir /sys/kernel/config/iio/devices/dummy/foo BUG: kernel NULL pointer dereference, address: ... ... Call Trace: __iio_device_register iio_dummy_probe Since there seems to be no reason to make a parent device of an IIO dummy device mandatory, let’s prevent the invalid memory access in __iio_device_register when the parent device is NULL. With this change, the IIO dummy driver works fine with configfs.
CVE-2023-53997 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: thermal: of: fix double-free on unregistration Since commit 3d439b1a2ad3 ("thermal/core: Alloc-copy-free the thermal zone parameters structure"), thermal_zone_device_register() allocates a copy of the tzp argument and frees it when unregistering, so thermal_of_zone_register() now ends up leaking its original tzp and double-freeing the tzp copy. Fix this by locating tzp on stack instead.
CVE-2023-53987 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ping: Fix potentail NULL deref for /proc/net/icmp. After commit dbca1596bbb0 ("ping: convert to RCU lookups, get rid of rwlock"), we use RCU for ping sockets, but we should use spinlock for /proc/net/icmp to avoid a potential NULL deref mentioned in the previous patch. Let's go back to using spinlock there. Note we can convert ping sockets to use hlist instead of hlist_nulls because we do not use SLAB_TYPESAFE_BY_RCU for ping sockets.
CVE-2023-54007 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: vmci_host: fix a race condition in vmci_host_poll() causing GPF During fuzzing, a general protection fault is observed in vmci_host_poll(). general protection fault, probably for non-canonical address 0xdffffc0000000019: 0000 [#1] PREEMPT SMP KASAN KASAN: null-ptr-deref in range [0x00000000000000c8-0x00000000000000cf] RIP: 0010:__lock_acquire+0xf3/0x5e00 kernel/locking/lockdep.c:4926 <- omitting registers -> Call Trace: <TASK> lock_acquire+0x1a4/0x4a0 kernel/locking/lockdep.c:5672 __raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline] _raw_spin_lock_irqsave+0xb3/0x100 kernel/locking/spinlock.c:162 add_wait_queue+0x3d/0x260 kernel/sched/wait.c:22 poll_wait include/linux/poll.h:49 [inline] vmci_host_poll+0xf8/0x2b0 drivers/misc/vmw_vmci/vmci_host.c:174 vfs_poll include/linux/poll.h:88 [inline] do_pollfd fs/select.c:873 [inline] do_poll fs/select.c:921 [inline] do_sys_poll+0xc7c/0x1aa0 fs/select.c:1015 __do_sys_ppoll fs/select.c:1121 [inline] __se_sys_ppoll+0x2cc/0x330 fs/select.c:1101 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x4e/0xa0 arch/x86/entry/common.c:82 entry_SYSCALL_64_after_hwframe+0x46/0xb0 Example thread interleaving that causes the general protection fault is as follows: CPU1 (vmci_host_poll) CPU2 (vmci_host_do_init_context) ----- ----- // Read uninitialized context context = vmci_host_dev->context; // Initialize context vmci_host_dev->context = vmci_ctx_create(); vmci_host_dev->ct_type = VMCIOBJ_CONTEXT; if (vmci_host_dev->ct_type == VMCIOBJ_CONTEXT) { // Dereferencing the wrong pointer poll_wait(..., &context->host_context); } In this scenario, vmci_host_poll() reads vmci_host_dev->context first, and then reads vmci_host_dev->ct_type to check that vmci_host_dev->context is initialized. However, since these two reads are not atomically executed, there is a chance of a race condition as described above. To fix this race condition, read vmci_host_dev->context after checking the value of vmci_host_dev->ct_type so that vmci_host_poll() always reads an initialized context.
CVE-2023-54024 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: KVM: Destroy target device if coalesced MMIO unregistration fails Destroy and free the target coalesced MMIO device if unregistering said device fails. As clearly noted in the code, kvm_io_bus_unregister_dev() does not destroy the target device. BUG: memory leak unreferenced object 0xffff888112a54880 (size 64): comm "syz-executor.2", pid 5258, jiffies 4297861402 (age 14.129s) hex dump (first 32 bytes): 38 c7 67 15 00 c9 ff ff 38 c7 67 15 00 c9 ff ff 8.g.....8.g..... e0 c7 e1 83 ff ff ff ff 00 30 67 15 00 c9 ff ff .........0g..... backtrace: [<0000000006995a8a>] kmalloc include/linux/slab.h:556 [inline] [<0000000006995a8a>] kzalloc include/linux/slab.h:690 [inline] [<0000000006995a8a>] kvm_vm_ioctl_register_coalesced_mmio+0x8e/0x3d0 arch/x86/kvm/../../../virt/kvm/coalesced_mmio.c:150 [<00000000022550c2>] kvm_vm_ioctl+0x47d/0x1600 arch/x86/kvm/../../../virt/kvm/kvm_main.c:3323 [<000000008a75102f>] vfs_ioctl fs/ioctl.c:46 [inline] [<000000008a75102f>] file_ioctl fs/ioctl.c:509 [inline] [<000000008a75102f>] do_vfs_ioctl+0xbab/0x1160 fs/ioctl.c:696 [<0000000080e3f669>] ksys_ioctl+0x76/0xa0 fs/ioctl.c:713 [<0000000059ef4888>] __do_sys_ioctl fs/ioctl.c:720 [inline] [<0000000059ef4888>] __se_sys_ioctl fs/ioctl.c:718 [inline] [<0000000059ef4888>] __x64_sys_ioctl+0x6f/0xb0 fs/ioctl.c:718 [<000000006444fa05>] do_syscall_64+0x9f/0x4e0 arch/x86/entry/common.c:290 [<000000009a4ed50b>] entry_SYSCALL_64_after_hwframe+0x49/0xbe BUG: leak checking failed
CVE-2023-54025 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: wifi: rsi: Do not configure WoWlan in shutdown hook if not enabled In case WoWlan was never configured during the operation of the system, the hw->wiphy->wowlan_config will be NULL. rsi_config_wowlan() checks whether wowlan_config is non-NULL and if it is not, then WARNs about it. The warning is valid, as during normal operation the rsi_config_wowlan() should only ever be called with non-NULL wowlan_config. In shutdown this rsi_config_wowlan() should only ever be called if WoWlan was configured before by the user. Add checks for non-NULL wowlan_config into the shutdown hook. While at it, check whether the wiphy is also non-NULL before accessing wowlan_config . Drop the single-use wowlan_config variable, just inline it into function call.
CVE-2023-54033 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: fix a memory leak in the LRU and LRU_PERCPU hash maps The LRU and LRU_PERCPU maps allocate a new element on update before locking the target hash table bucket. Right after that the maps try to lock the bucket. If this fails, then maps return -EBUSY to the caller without releasing the allocated element. This makes the element untracked: it doesn't belong to either of free lists, and it doesn't belong to the hash table, so can't be re-used; this eventually leads to the permanent -ENOMEM on LRU map updates, which is unexpected. Fix this by returning the element to the local free list if bucket locking fails.
CVE-2023-54026 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: opp: Fix use-after-free in lazy_opp_tables after probe deferral When dev_pm_opp_of_find_icc_paths() in _allocate_opp_table() returns -EPROBE_DEFER, the opp_table is freed again, to wait until all the interconnect paths are available. However, if the OPP table is using required-opps then it may already have been added to the global lazy_opp_tables list. The error path does not remove the opp_table from the list again. This can cause crashes later when the provider of the required-opps is added, since we will iterate over OPP tables that have already been freed. E.g.: Unable to handle kernel NULL pointer dereference when read CPU: 0 PID: 7 Comm: kworker/0:0 Not tainted 6.4.0-rc3 PC is at _of_add_opp_table_v2 (include/linux/of.h:949 drivers/opp/of.c:98 drivers/opp/of.c:344 drivers/opp/of.c:404 drivers/opp/of.c:1032) -> lazy_link_required_opp_table() Fix this by calling _of_clear_opp_table() to remove the opp_table from the list and clear other allocated resources. While at it, also add the missing mutex_destroy() calls in the error path.
CVE-2023-54037 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ice: prevent NULL pointer deref during reload Calling ethtool during reload can lead to call trace, because VSI isn't configured for some time, but netdev is alive. To fix it add rtnl lock for VSI deconfig and config. Set ::num_q_vectors to 0 after freeing and add a check for ::tx/rx_rings in ring related ethtool ops. Add proper unroll of filters in ice_start_eth(). Reproduction: $watch -n 0.1 -d 'ethtool -g enp24s0f0np0' $devlink dev reload pci/0000:18:00.0 action driver_reinit Call trace before fix: [66303.926205] BUG: kernel NULL pointer dereference, address: 0000000000000000 [66303.926259] #PF: supervisor read access in kernel mode [66303.926286] #PF: error_code(0x0000) - not-present page [66303.926311] PGD 0 P4D 0 [66303.926332] Oops: 0000 [#1] PREEMPT SMP PTI [66303.926358] CPU: 4 PID: 933821 Comm: ethtool Kdump: loaded Tainted: G OE 6.4.0-rc5+ #1 [66303.926400] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.00.01.0014.070920180847 07/09/2018 [66303.926446] RIP: 0010:ice_get_ringparam+0x22/0x50 [ice] [66303.926649] Code: 90 90 90 90 90 90 90 90 f3 0f 1e fa 0f 1f 44 00 00 48 8b 87 c0 09 00 00 c7 46 04 e0 1f 00 00 c7 46 10 e0 1f 00 00 48 8b 50 20 <48> 8b 12 0f b7 52 3a 89 56 14 48 8b 40 28 48 8b 00 0f b7 40 58 48 [66303.926722] RSP: 0018:ffffad40472f39c8 EFLAGS: 00010246 [66303.926749] RAX: ffff98a8ada05828 RBX: ffff98a8c46dd060 RCX: ffffad40472f3b48 [66303.926781] RDX: 0000000000000000 RSI: ffff98a8c46dd068 RDI: ffff98a8b23c4000 [66303.926811] RBP: ffffad40472f3b48 R08: 00000000000337b0 R09: 0000000000000000 [66303.926843] R10: 0000000000000001 R11: 0000000000000100 R12: ffff98a8b23c4000 [66303.926874] R13: ffff98a8c46dd060 R14: 000000000000000f R15: ffffad40472f3a50 [66303.926906] FS: 00007f6397966740(0000) GS:ffff98b390900000(0000) knlGS:0000000000000000 [66303.926941] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [66303.926967] CR2: 0000000000000000 CR3: 000000011ac20002 CR4: 00000000007706e0 [66303.926999] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [66303.927029] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [66303.927060] PKRU: 55555554 [66303.927075] Call Trace: [66303.927094] <TASK> [66303.927111] ? __die+0x23/0x70 [66303.927140] ? page_fault_oops+0x171/0x4e0 [66303.927176] ? exc_page_fault+0x7f/0x180 [66303.927209] ? asm_exc_page_fault+0x26/0x30 [66303.927244] ? ice_get_ringparam+0x22/0x50 [ice] [66303.927433] rings_prepare_data+0x62/0x80 [66303.927469] ethnl_default_doit+0xe2/0x350 [66303.927501] genl_family_rcv_msg_doit.isra.0+0xe3/0x140 [66303.927538] genl_rcv_msg+0x1b1/0x2c0 [66303.927561] ? __pfx_ethnl_default_doit+0x10/0x10 [66303.927590] ? __pfx_genl_rcv_msg+0x10/0x10 [66303.927615] netlink_rcv_skb+0x58/0x110 [66303.927644] genl_rcv+0x28/0x40 [66303.927665] netlink_unicast+0x19e/0x290 [66303.927691] netlink_sendmsg+0x254/0x4d0 [66303.927717] sock_sendmsg+0x93/0xa0 [66303.927743] __sys_sendto+0x126/0x170 [66303.927780] __x64_sys_sendto+0x24/0x30 [66303.928593] do_syscall_64+0x5d/0x90 [66303.929370] ? __count_memcg_events+0x60/0xa0 [66303.930146] ? count_memcg_events.constprop.0+0x1a/0x30 [66303.930920] ? handle_mm_fault+0x9e/0x350 [66303.931688] ? do_user_addr_fault+0x258/0x740 [66303.932452] ? exc_page_fault+0x7f/0x180 [66303.933193] entry_SYSCALL_64_after_hwframe+0x72/0xdc
CVE-2023-54036 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: rtl8xxxu: Fix memory leaks with RTL8723BU, RTL8192EU The wifi + bluetooth combo chip RTL8723BU can leak memory (especially?) when it's connected to a bluetooth audio device. The busy bluetooth traffic generates lots of C2H (card to host) messages, which are not freed correctly. To fix this, move the dev_kfree_skb() call in rtl8xxxu_c2hcmd_callback() inside the loop where skb_dequeue() is called. The RTL8192EU leaks memory because the C2H messages are added to the queue and left there forever. (This was fine in the past because it probably wasn't sending any C2H messages until commit e542e66b7c2e ("wifi: rtl8xxxu: gen2: Turn on the rate control"). Since that commit it sends a C2H message when the TX rate changes.) To fix this, delete the check for rf_paths > 1 and the goto. Let the function process the C2H messages from RTL8192EU like the ones from the other chips. Theoretically the RTL8188FU could also leak like RTL8723BU, but it most likely doesn't send C2H messages frequently enough. This change was tested with RTL8723BU by Erhard F. I tested it with RTL8188FU and RTL8192EU.
CVE-2023-53994 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ionic: remove WARN_ON to prevent panic_on_warn Remove unnecessary early code development check and the WARN_ON that it uses. The irq alloc and free paths have long been cleaned up and this check shouldn't have stuck around so long.
CVE-2023-54035 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: fix underflow in chain reference counter Set element addition error path decrements reference counter on chains twice: once on element release and again via nft_data_release(). Then, d6b478666ffa ("netfilter: nf_tables: fix underflow in object reference counter") incorrectly fixed this by removing the stateful object reference count decrement. Restore the stateful object decrement as in b91d90368837 ("netfilter: nf_tables: fix leaking object reference count") and let nft_data_release() decrement the chain reference counter, so this is done only once.
CVE-2023-54040 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ice: fix wrong fallback logic for FDIR When adding a FDIR filter, if ice_vc_fdir_set_irq_ctx returns failure, the inserted fdir entry will not be removed and if ice_vc_fdir_write_fltr returns failure, the fdir context info for irq handler will not be cleared which may lead to inconsistent or memory leak issue. This patch refines failure cases to resolve this issue.
CVE-2023-53995 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: ipv4: fix one memleak in __inet_del_ifa() I got the below warning when do fuzzing test: unregister_netdevice: waiting for bond0 to become free. Usage count = 2 It can be repoduced via: ip link add bond0 type bond sysctl -w net.ipv4.conf.bond0.promote_secondaries=1 ip addr add 4.117.174.103/0 scope 0x40 dev bond0 ip addr add 192.168.100.111/255.255.255.254 scope 0 dev bond0 ip addr add 0.0.0.4/0 scope 0x40 secondary dev bond0 ip addr del 4.117.174.103/0 scope 0x40 dev bond0 ip link delete bond0 type bond In this reproduction test case, an incorrect 'last_prim' is found in __inet_del_ifa(), as a result, the secondary address(0.0.0.4/0 scope 0x40) is lost. The memory of the secondary address is leaked and the reference of in_device and net_device is leaked. Fix this problem: Look for 'last_prim' starting at location of the deleted IP and inserting the promoted IP into the location of 'last_prim'.
CVE-2023-54020 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: dmaengine: sf-pdma: pdma_desc memory leak fix Commit b2cc5c465c2c ("dmaengine: sf-pdma: Add multithread support for a DMA channel") changed sf_pdma_prep_dma_memcpy() to unconditionally allocate a new sf_pdma_desc each time it is called. The driver previously recycled descs, by checking the in_use flag, only allocating additional descs if the existing one was in use. This logic was removed in commit b2cc5c465c2c ("dmaengine: sf-pdma: Add multithread support for a DMA channel"), but sf_pdma_free_desc() was not changed to handle the new behaviour. As a result, each time sf_pdma_prep_dma_memcpy() is called, the previous descriptor is leaked, over time leading to memory starvation: unreferenced object 0xffffffe008447300 (size 192): comm "irq/39-mchp_dsc", pid 343, jiffies 4294906910 (age 981.200s) hex dump (first 32 bytes): 00 00 00 ff 00 00 00 00 b8 c1 00 00 00 00 00 00 ................ 00 00 70 08 10 00 00 00 00 00 00 c0 00 00 00 00 ..p............. backtrace: [<00000000064a04f4>] kmemleak_alloc+0x1e/0x28 [<00000000018927a7>] kmem_cache_alloc+0x11e/0x178 [<000000002aea8d16>] sf_pdma_prep_dma_memcpy+0x40/0x112 Add the missing kfree() to sf_pdma_free_desc(), and remove the redundant in_use flag.
CVE-2023-54039 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: can: j1939: j1939_tp_tx_dat_new(): fix out-of-bounds memory access In the j1939_tp_tx_dat_new() function, an out-of-bounds memory access could occur during the memcpy() operation if the size of skb->cb is larger than the size of struct j1939_sk_buff_cb. This is because the memcpy() operation uses the size of skb->cb, leading to a read beyond the struct j1939_sk_buff_cb. Updated the memcpy() operation to use the size of struct j1939_sk_buff_cb instead of the size of skb->cb. This ensures that the memcpy() operation only reads the memory within the bounds of struct j1939_sk_buff_cb, preventing out-of-bounds memory access. Additionally, add a BUILD_BUG_ON() to check that the size of skb->cb is greater than or equal to the size of struct j1939_sk_buff_cb. This ensures that the skb->cb buffer is large enough to hold the j1939_sk_buff_cb structure. [mkl: rephrase commit message]
CVE-2023-54008 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: virtio_vdpa: build affinity masks conditionally We try to build affinity mask via create_affinity_masks() unconditionally which may lead several issues: - the affinity mask is not used for parent without affinity support (only VDUSE support the affinity now) - the logic of create_affinity_masks() might not work for devices other than block. For example it's not rare in the networking device where the number of queues could exceed the number of CPUs. Such case breaks the current affinity logic which is based on group_cpus_evenly() who assumes the number of CPUs are not less than the number of groups. This can trigger a warning[1]: if (ret >= 0) WARN_ON(nr_present + nr_others < numgrps); Fixing this by only build the affinity masks only when - Driver passes affinity descriptor, driver like virtio-blk can make sure to limit the number of queues when it exceeds the number of CPUs - Parent support affinity setting config ops This help to avoid the warning. More optimizations could be done on top. [1] [ 682.146655] WARNING: CPU: 6 PID: 1550 at lib/group_cpus.c:400 group_cpus_evenly+0x1aa/0x1c0 [ 682.146668] CPU: 6 PID: 1550 Comm: vdpa Not tainted 6.5.0-rc5jason+ #79 [ 682.146671] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-0-gea1b7a073390-prebuilt.qemu.org 04/01/2014 [ 682.146673] RIP: 0010:group_cpus_evenly+0x1aa/0x1c0 [ 682.146676] Code: 4c 89 e0 5b 5d 41 5c 41 5d 41 5e c3 cc cc cc cc e8 1b c4 74 ff 48 89 ef e8 13 ac 98 ff 4c 89 e7 45 31 e4 e8 08 ac 98 ff eb c2 <0f> 0b eb b6 e8 fd 05 c3 00 45 31 e4 eb e5 cc cc cc cc cc cc cc cc [ 682.146679] RSP: 0018:ffffc9000215f498 EFLAGS: 00010293 [ 682.146682] RAX: 000000000001f1e0 RBX: 0000000000000041 RCX: 0000000000000000 [ 682.146684] RDX: ffff888109922058 RSI: 0000000000000041 RDI: 0000000000000030 [ 682.146686] RBP: ffff888109922058 R08: ffffc9000215f498 R09: ffffc9000215f4a0 [ 682.146687] R10: 00000000000198d0 R11: 0000000000000030 R12: ffff888107e02800 [ 682.146689] R13: 0000000000000030 R14: 0000000000000030 R15: 0000000000000041 [ 682.146692] FS: 00007fef52315740(0000) GS:ffff888237380000(0000) knlGS:0000000000000000 [ 682.146695] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 682.146696] CR2: 00007fef52509000 CR3: 0000000110dbc004 CR4: 0000000000370ee0 [ 682.146698] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 682.146700] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 682.146701] Call Trace: [ 682.146703] <TASK> [ 682.146705] ? __warn+0x7b/0x130 [ 682.146709] ? group_cpus_evenly+0x1aa/0x1c0 [ 682.146712] ? report_bug+0x1c8/0x1e0 [ 682.146717] ? handle_bug+0x3c/0x70 [ 682.146721] ? exc_invalid_op+0x14/0x70 [ 682.146723] ? asm_exc_invalid_op+0x16/0x20 [ 682.146727] ? group_cpus_evenly+0x1aa/0x1c0 [ 682.146729] ? group_cpus_evenly+0x15c/0x1c0 [ 682.146731] create_affinity_masks+0xaf/0x1a0 [ 682.146735] virtio_vdpa_find_vqs+0x83/0x1d0 [ 682.146738] ? __pfx_default_calc_sets+0x10/0x10 [ 682.146742] virtnet_find_vqs+0x1f0/0x370 [ 682.146747] virtnet_probe+0x501/0xcd0 [ 682.146749] ? vp_modern_get_status+0x12/0x20 [ 682.146751] ? get_cap_addr.isra.0+0x10/0xc0 [ 682.146754] virtio_dev_probe+0x1af/0x260 [ 682.146759] really_probe+0x1a5/0x410
CVE-2022-50702 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: vdpa_sim: fix possible memory leak in vdpasim_net_init() and vdpasim_blk_init() Inject fault while probing module, if device_register() fails in vdpasim_net_init() or vdpasim_blk_init(), but the refcount of kobject is not decreased to 0, the name allocated in dev_set_name() is leaked. Fix this by calling put_device(), so that name can be freed in callback function kobject_cleanup(). (vdpa_sim_net) unreferenced object 0xffff88807eebc370 (size 16): comm "modprobe", pid 3848, jiffies 4362982860 (age 18.153s) hex dump (first 16 bytes): 76 64 70 61 73 69 6d 5f 6e 65 74 00 6b 6b 6b a5 vdpasim_net.kkk. backtrace: [<ffffffff8174f19e>] __kmalloc_node_track_caller+0x4e/0x150 [<ffffffff81731d53>] kstrdup+0x33/0x60 [<ffffffff83a5d421>] kobject_set_name_vargs+0x41/0x110 [<ffffffff82d87aab>] dev_set_name+0xab/0xe0 [<ffffffff82d91a23>] device_add+0xe3/0x1a80 [<ffffffffa0270013>] 0xffffffffa0270013 [<ffffffff81001c27>] do_one_initcall+0x87/0x2e0 [<ffffffff813739cb>] do_init_module+0x1ab/0x640 [<ffffffff81379d20>] load_module+0x5d00/0x77f0 [<ffffffff8137bc40>] __do_sys_finit_module+0x110/0x1b0 [<ffffffff83c4d505>] do_syscall_64+0x35/0x80 [<ffffffff83e0006a>] entry_SYSCALL_64_after_hwframe+0x46/0xb0 (vdpa_sim_blk) unreferenced object 0xffff8881070c1250 (size 16): comm "modprobe", pid 6844, jiffies 4364069319 (age 17.572s) hex dump (first 16 bytes): 76 64 70 61 73 69 6d 5f 62 6c 6b 00 6b 6b 6b a5 vdpasim_blk.kkk. backtrace: [<ffffffff8174f19e>] __kmalloc_node_track_caller+0x4e/0x150 [<ffffffff81731d53>] kstrdup+0x33/0x60 [<ffffffff83a5d421>] kobject_set_name_vargs+0x41/0x110 [<ffffffff82d87aab>] dev_set_name+0xab/0xe0 [<ffffffff82d91a23>] device_add+0xe3/0x1a80 [<ffffffffa0220013>] 0xffffffffa0220013 [<ffffffff81001c27>] do_one_initcall+0x87/0x2e0 [<ffffffff813739cb>] do_init_module+0x1ab/0x640 [<ffffffff81379d20>] load_module+0x5d00/0x77f0 [<ffffffff8137bc40>] __do_sys_finit_module+0x110/0x1b0 [<ffffffff83c4d505>] do_syscall_64+0x35/0x80 [<ffffffff83e0006a>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
CVE-2025-68358 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix racy bitfield write in btrfs_clear_space_info_full() From the memory-barriers.txt document regarding memory barrier ordering guarantees: (*) These guarantees do not apply to bitfields, because compilers often generate code to modify these using non-atomic read-modify-write sequences. Do not attempt to use bitfields to synchronize parallel algorithms. (*) Even in cases where bitfields are protected by locks, all fields in a given bitfield must be protected by one lock. If two fields in a given bitfield are protected by different locks, the compiler's non-atomic read-modify-write sequences can cause an update to one field to corrupt the value of an adjacent field. btrfs_space_info has a bitfield sharing an underlying word consisting of the fields full, chunk_alloc, and flush: struct btrfs_space_info { struct btrfs_fs_info * fs_info; /* 0 8 */ struct btrfs_space_info * parent; /* 8 8 */ ... int clamp; /* 172 4 */ unsigned int full:1; /* 176: 0 4 */ unsigned int chunk_alloc:1; /* 176: 1 4 */ unsigned int flush:1; /* 176: 2 4 */ ... Therefore, to be safe from parallel read-modify-writes losing a write to one of the bitfield members protected by a lock, all writes to all the bitfields must use the lock. They almost universally do, except for btrfs_clear_space_info_full() which iterates over the space_infos and writes out found->full = 0 without a lock. Imagine that we have one thread completing a transaction in which we finished deleting a block_group and are thus calling btrfs_clear_space_info_full() while simultaneously the data reclaim ticket infrastructure is running do_async_reclaim_data_space(): T1 T2 btrfs_commit_transaction btrfs_clear_space_info_full data_sinfo->full = 0 READ: full:0, chunk_alloc:0, flush:1 do_async_reclaim_data_space(data_sinfo) spin_lock(&space_info->lock); if(list_empty(tickets)) space_info->flush = 0; READ: full: 0, chunk_alloc:0, flush:1 MOD/WRITE: full: 0, chunk_alloc:0, flush:0 spin_unlock(&space_info->lock); return; MOD/WRITE: full:0, chunk_alloc:0, flush:1 and now data_sinfo->flush is 1 but the reclaim worker has exited. This breaks the invariant that flush is 0 iff there is no work queued or running. Once this invariant is violated, future allocations that go into __reserve_bytes() will add tickets to space_info->tickets but will see space_info->flush is set to 1 and not queue the work. After this, they will block forever on the resulting ticket, as it is now impossible to kick the worker again. I also confirmed by looking at the assembly of the affected kernel that it is doing RMW operations. For example, to set the flush (3rd) bit to 0, the assembly is: andb $0xfb,0x60(%rbx) and similarly for setting the full (1st) bit to 0: andb $0xfe,-0x20(%rax) So I think this is really a bug on practical systems. I have observed a number of systems in this exact state, but am currently unable to reproduce it. Rather than leaving this footgun lying around for the future, take advantage of the fact that there is room in the struct anyway, and that it is already quite large and simply change the three bitfield members to bools. This avoids writes to space_info->full having any effect on ---truncated---