Filtered by CWE-99
Total 349 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2024-41003 1 Linux 1 Linux Kernel 2025-09-25 7.8 High
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix reg_set_min_max corruption of fake_reg Juan reported that after doing some changes to buzzer [0] and implementing a new fuzzing strategy guided by coverage, they noticed the following in one of the probes: [...] 13: (79) r6 = *(u64 *)(r0 +0) ; R0=map_value(ks=4,vs=8) R6_w=scalar() 14: (b7) r0 = 0 ; R0_w=0 15: (b4) w0 = -1 ; R0_w=0xffffffff 16: (74) w0 >>= 1 ; R0_w=0x7fffffff 17: (5c) w6 &= w0 ; R0_w=0x7fffffff R6_w=scalar(smin=smin32=0,smax=umax=umax32=0x7fffffff,var_off=(0x0; 0x7fffffff)) 18: (44) w6 |= 2 ; R6_w=scalar(smin=umin=smin32=umin32=2,smax=umax=umax32=0x7fffffff,var_off=(0x2; 0x7ffffffd)) 19: (56) if w6 != 0x7ffffffd goto pc+1 REG INVARIANTS VIOLATION (true_reg2): range bounds violation u64=[0x7fffffff, 0x7ffffffd] s64=[0x7fffffff, 0x7ffffffd] u32=[0x7fffffff, 0x7ffffffd] s32=[0x7fffffff, 0x7ffffffd] var_off=(0x7fffffff, 0x0) REG INVARIANTS VIOLATION (false_reg1): range bounds violation u64=[0x7fffffff, 0x7ffffffd] s64=[0x7fffffff, 0x7ffffffd] u32=[0x7fffffff, 0x7ffffffd] s32=[0x7fffffff, 0x7ffffffd] var_off=(0x7fffffff, 0x0) REG INVARIANTS VIOLATION (false_reg2): const tnum out of sync with range bounds u64=[0x0, 0xffffffffffffffff] s64=[0x8000000000000000, 0x7fffffffffffffff] u32=[0x0, 0xffffffff] s32=[0x80000000, 0x7fffffff] var_off=(0x7fffffff, 0x0) 19: R6_w=0x7fffffff 20: (95) exit from 19 to 21: R0=0x7fffffff R6=scalar(smin=umin=smin32=umin32=2,smax=umax=smax32=umax32=0x7ffffffe,var_off=(0x2; 0x7ffffffd)) R7=map_ptr(ks=4,vs=8) R9=ctx() R10=fp0 fp-24=map_ptr(ks=4,vs=8) fp-40=mmmmmmmm 21: R0=0x7fffffff R6=scalar(smin=umin=smin32=umin32=2,smax=umax=smax32=umax32=0x7ffffffe,var_off=(0x2; 0x7ffffffd)) R7=map_ptr(ks=4,vs=8) R9=ctx() R10=fp0 fp-24=map_ptr(ks=4,vs=8) fp-40=mmmmmmmm 21: (14) w6 -= 2147483632 ; R6_w=scalar(smin=umin=umin32=2,smax=umax=0xffffffff,smin32=0x80000012,smax32=14,var_off=(0x2; 0xfffffffd)) 22: (76) if w6 s>= 0xe goto pc+1 ; R6_w=scalar(smin=umin=umin32=2,smax=umax=0xffffffff,smin32=0x80000012,smax32=13,var_off=(0x2; 0xfffffffd)) 23: (95) exit from 22 to 24: R0=0x7fffffff R6_w=14 R7=map_ptr(ks=4,vs=8) R9=ctx() R10=fp0 fp-24=map_ptr(ks=4,vs=8) fp-40=mmmmmmmm 24: R0=0x7fffffff R6_w=14 R7=map_ptr(ks=4,vs=8) R9=ctx() R10=fp0 fp-24=map_ptr(ks=4,vs=8) fp-40=mmmmmmmm 24: (14) w6 -= 14 ; R6_w=0 [...] What can be seen here is a register invariant violation on line 19. After the binary-or in line 18, the verifier knows that bit 2 is set but knows nothing about the rest of the content which was loaded from a map value, meaning, range is [2,0x7fffffff] with var_off=(0x2; 0x7ffffffd). When in line 19 the verifier analyzes the branch, it splits the register states in reg_set_min_max() into the registers of the true branch (true_reg1, true_reg2) and the registers of the false branch (false_reg1, false_reg2). Since the test is w6 != 0x7ffffffd, the src_reg is a known constant. Internally, the verifier creates a "fake" register initialized as scalar to the value of 0x7ffffffd, and then passes it onto reg_set_min_max(). Now, for line 19, it is mathematically impossible to take the false branch of this program, yet the verifier analyzes it. It is impossible because the second bit of r6 will be set due to the prior or operation and the constant in the condition has that bit unset (hex(fd) == binary(1111 1101). When the verifier first analyzes the false / fall-through branch, it will compute an intersection between the var_off of r6 and of the constant. This is because the verifier creates a "fake" register initialized to the value of the constant. The intersection result later refines both registers in regs_refine_cond_op(): [...] t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off)); reg1->var_o ---truncated---
CVE-2023-52743 1 Linux 1 Linux Kernel 2025-09-25 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ice: Do not use WQ_MEM_RECLAIM flag for workqueue When both ice and the irdma driver are loaded, a warning in check_flush_dependency is being triggered. This is due to ice driver workqueue being allocated with the WQ_MEM_RECLAIM flag and the irdma one is not. According to kernel documentation, this flag should be set if the workqueue will be involved in the kernel's memory reclamation flow. Since it is not, there is no need for the ice driver's WQ to have this flag set so remove it. Example trace: [ +0.000004] workqueue: WQ_MEM_RECLAIM ice:ice_service_task [ice] is flushing !WQ_MEM_RECLAIM infiniband:0x0 [ +0.000139] WARNING: CPU: 0 PID: 728 at kernel/workqueue.c:2632 check_flush_dependency+0x178/0x1a0 [ +0.000011] Modules linked in: bonding tls xt_CHECKSUM xt_MASQUERADE xt_conntrack ipt_REJECT nf_reject_ipv4 nft_compat nft_cha in_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 nf_tables nfnetlink bridge stp llc rfkill vfat fat intel_rapl_msr intel _rapl_common isst_if_common skx_edac nfit libnvdimm x86_pkg_temp_thermal intel_powerclamp coretemp kvm_intel kvm irqbypass crct1 0dif_pclmul crc32_pclmul ghash_clmulni_intel rapl intel_cstate rpcrdma sunrpc rdma_ucm ib_srpt ib_isert iscsi_target_mod target_ core_mod ib_iser libiscsi scsi_transport_iscsi rdma_cm ib_cm iw_cm iTCO_wdt iTCO_vendor_support ipmi_ssif irdma mei_me ib_uverbs ib_core intel_uncore joydev pcspkr i2c_i801 acpi_ipmi mei lpc_ich i2c_smbus intel_pch_thermal ioatdma ipmi_si acpi_power_meter acpi_pad xfs libcrc32c sd_mod t10_pi crc64_rocksoft crc64 sg ahci ixgbe libahci ice i40e igb crc32c_intel mdio i2c_algo_bit liba ta dca wmi dm_mirror dm_region_hash dm_log dm_mod ipmi_devintf ipmi_msghandler fuse [ +0.000161] [last unloaded: bonding] [ +0.000006] CPU: 0 PID: 728 Comm: kworker/0:2 Tainted: G S 6.2.0-rc2_next-queue-13jan-00458-gc20aabd57164 #1 [ +0.000006] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0010.010620200716 01/06/2020 [ +0.000003] Workqueue: ice ice_service_task [ice] [ +0.000127] RIP: 0010:check_flush_dependency+0x178/0x1a0 [ +0.000005] Code: 89 8e 02 01 e8 49 3d 40 00 49 8b 55 18 48 8d 8d d0 00 00 00 48 8d b3 d0 00 00 00 4d 89 e0 48 c7 c7 e0 3b 08 9f e8 bb d3 07 01 <0f> 0b e9 be fe ff ff 80 3d 24 89 8e 02 00 0f 85 6b ff ff ff e9 06 [ +0.000004] RSP: 0018:ffff88810a39f990 EFLAGS: 00010282 [ +0.000005] RAX: 0000000000000000 RBX: ffff888141bc2400 RCX: 0000000000000000 [ +0.000004] RDX: 0000000000000001 RSI: dffffc0000000000 RDI: ffffffffa1213a80 [ +0.000003] RBP: ffff888194bf3400 R08: ffffed117b306112 R09: ffffed117b306112 [ +0.000003] R10: ffff888bd983088b R11: ffffed117b306111 R12: 0000000000000000 [ +0.000003] R13: ffff888111f84d00 R14: ffff88810a3943ac R15: ffff888194bf3400 [ +0.000004] FS: 0000000000000000(0000) GS:ffff888bd9800000(0000) knlGS:0000000000000000 [ +0.000003] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ +0.000003] CR2: 000056035b208b60 CR3: 000000017795e005 CR4: 00000000007706f0 [ +0.000003] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ +0.000003] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ +0.000002] PKRU: 55555554 [ +0.000003] Call Trace: [ +0.000002] <TASK> [ +0.000003] __flush_workqueue+0x203/0x840 [ +0.000006] ? mutex_unlock+0x84/0xd0 [ +0.000008] ? __pfx_mutex_unlock+0x10/0x10 [ +0.000004] ? __pfx___flush_workqueue+0x10/0x10 [ +0.000006] ? mutex_lock+0xa3/0xf0 [ +0.000005] ib_cache_cleanup_one+0x39/0x190 [ib_core] [ +0.000174] __ib_unregister_device+0x84/0xf0 [ib_core] [ +0.000094] ib_unregister_device+0x25/0x30 [ib_core] [ +0.000093] irdma_ib_unregister_device+0x97/0xc0 [irdma] [ +0.000064] ? __pfx_irdma_ib_unregister_device+0x10/0x10 [irdma] [ +0.000059] ? up_write+0x5c/0x90 [ +0.000005] irdma_remove+0x36/0x90 [irdma] [ +0.000062] auxiliary_bus_remove+0x32/0x50 [ +0.000007] device_r ---truncated---
CVE-2023-52778 1 Linux 1 Linux Kernel 2025-09-25 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mptcp: deal with large GSO size After the blamed commit below, the TCP sockets (and the MPTCP subflows) can build egress packets larger than 64K. That exceeds the maximum DSS data size, the length being misrepresent on the wire and the stream being corrupted, as later observed on the receiver: WARNING: CPU: 0 PID: 9696 at net/mptcp/protocol.c:705 __mptcp_move_skbs_from_subflow+0x2604/0x26e0 CPU: 0 PID: 9696 Comm: syz-executor.7 Not tainted 6.6.0-rc5-gcd8bdf563d46 #45 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2.el7 04/01/2014 netlink: 8 bytes leftover after parsing attributes in process `syz-executor.4'. RIP: 0010:__mptcp_move_skbs_from_subflow+0x2604/0x26e0 net/mptcp/protocol.c:705 RSP: 0018:ffffc90000006e80 EFLAGS: 00010246 RAX: ffffffff83e9f674 RBX: ffff88802f45d870 RCX: ffff888102ad0000 netlink: 8 bytes leftover after parsing attributes in process `syz-executor.4'. RDX: 0000000080000303 RSI: 0000000000013908 RDI: 0000000000003908 RBP: ffffc90000007110 R08: ffffffff83e9e078 R09: 1ffff1100e548c8a R10: dffffc0000000000 R11: ffffed100e548c8b R12: 0000000000013908 R13: dffffc0000000000 R14: 0000000000003908 R15: 000000000031cf29 FS: 00007f239c47e700(0000) GS:ffff88811b200000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f239c45cd78 CR3: 000000006a66c006 CR4: 0000000000770ef0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000600 PKRU: 55555554 Call Trace: <IRQ> mptcp_data_ready+0x263/0xac0 net/mptcp/protocol.c:819 subflow_data_ready+0x268/0x6d0 net/mptcp/subflow.c:1409 tcp_data_queue+0x21a1/0x7a60 net/ipv4/tcp_input.c:5151 tcp_rcv_established+0x950/0x1d90 net/ipv4/tcp_input.c:6098 tcp_v6_do_rcv+0x554/0x12f0 net/ipv6/tcp_ipv6.c:1483 tcp_v6_rcv+0x2e26/0x3810 net/ipv6/tcp_ipv6.c:1749 ip6_protocol_deliver_rcu+0xd6b/0x1ae0 net/ipv6/ip6_input.c:438 ip6_input+0x1c5/0x470 net/ipv6/ip6_input.c:483 ipv6_rcv+0xef/0x2c0 include/linux/netfilter.h:304 __netif_receive_skb+0x1ea/0x6a0 net/core/dev.c:5532 process_backlog+0x353/0x660 net/core/dev.c:5974 __napi_poll+0xc6/0x5a0 net/core/dev.c:6536 net_rx_action+0x6a0/0xfd0 net/core/dev.c:6603 __do_softirq+0x184/0x524 kernel/softirq.c:553 do_softirq+0xdd/0x130 kernel/softirq.c:454 Address the issue explicitly bounding the maximum GSO size to what MPTCP actually allows.
CVE-2023-52784 2 Linux, Redhat 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more 2025-09-25 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bonding: stop the device in bond_setup_by_slave() Commit 9eed321cde22 ("net: lapbether: only support ethernet devices") has been able to keep syzbot away from net/lapb, until today. In the following splat [1], the issue is that a lapbether device has been created on a bonding device without members. Then adding a non ARPHRD_ETHER member forced the bonding master to change its type. The fix is to make sure we call dev_close() in bond_setup_by_slave() so that the potential linked lapbether devices (or any other devices having assumptions on the physical device) are removed. A similar bug has been addressed in commit 40baec225765 ("bonding: fix panic on non-ARPHRD_ETHER enslave failure") [1] skbuff: skb_under_panic: text:ffff800089508810 len:44 put:40 head:ffff0000c78e7c00 data:ffff0000c78e7bea tail:0x16 end:0x140 dev:bond0 kernel BUG at net/core/skbuff.c:192 ! Internal error: Oops - BUG: 00000000f2000800 [#1] PREEMPT SMP Modules linked in: CPU: 0 PID: 6007 Comm: syz-executor383 Not tainted 6.6.0-rc3-syzkaller-gbf6547d8715b #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/04/2023 pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : skb_panic net/core/skbuff.c:188 [inline] pc : skb_under_panic+0x13c/0x140 net/core/skbuff.c:202 lr : skb_panic net/core/skbuff.c:188 [inline] lr : skb_under_panic+0x13c/0x140 net/core/skbuff.c:202 sp : ffff800096a06aa0 x29: ffff800096a06ab0 x28: ffff800096a06ba0 x27: dfff800000000000 x26: ffff0000ce9b9b50 x25: 0000000000000016 x24: ffff0000c78e7bea x23: ffff0000c78e7c00 x22: 000000000000002c x21: 0000000000000140 x20: 0000000000000028 x19: ffff800089508810 x18: ffff800096a06100 x17: 0000000000000000 x16: ffff80008a629a3c x15: 0000000000000001 x14: 1fffe00036837a32 x13: 0000000000000000 x12: 0000000000000000 x11: 0000000000000201 x10: 0000000000000000 x9 : cb50b496c519aa00 x8 : cb50b496c519aa00 x7 : 0000000000000001 x6 : 0000000000000001 x5 : ffff800096a063b8 x4 : ffff80008e280f80 x3 : ffff8000805ad11c x2 : 0000000000000001 x1 : 0000000100000201 x0 : 0000000000000086 Call trace: skb_panic net/core/skbuff.c:188 [inline] skb_under_panic+0x13c/0x140 net/core/skbuff.c:202 skb_push+0xf0/0x108 net/core/skbuff.c:2446 ip6gre_header+0xbc/0x738 net/ipv6/ip6_gre.c:1384 dev_hard_header include/linux/netdevice.h:3136 [inline] lapbeth_data_transmit+0x1c4/0x298 drivers/net/wan/lapbether.c:257 lapb_data_transmit+0x8c/0xb0 net/lapb/lapb_iface.c:447 lapb_transmit_buffer+0x178/0x204 net/lapb/lapb_out.c:149 lapb_send_control+0x220/0x320 net/lapb/lapb_subr.c:251 __lapb_disconnect_request+0x9c/0x17c net/lapb/lapb_iface.c:326 lapb_device_event+0x288/0x4e0 net/lapb/lapb_iface.c:492 notifier_call_chain+0x1a4/0x510 kernel/notifier.c:93 raw_notifier_call_chain+0x3c/0x50 kernel/notifier.c:461 call_netdevice_notifiers_info net/core/dev.c:1970 [inline] call_netdevice_notifiers_extack net/core/dev.c:2008 [inline] call_netdevice_notifiers net/core/dev.c:2022 [inline] __dev_close_many+0x1b8/0x3c4 net/core/dev.c:1508 dev_close_many+0x1e0/0x470 net/core/dev.c:1559 dev_close+0x174/0x250 net/core/dev.c:1585 lapbeth_device_event+0x2e4/0x958 drivers/net/wan/lapbether.c:466 notifier_call_chain+0x1a4/0x510 kernel/notifier.c:93 raw_notifier_call_chain+0x3c/0x50 kernel/notifier.c:461 call_netdevice_notifiers_info net/core/dev.c:1970 [inline] call_netdevice_notifiers_extack net/core/dev.c:2008 [inline] call_netdevice_notifiers net/core/dev.c:2022 [inline] __dev_close_many+0x1b8/0x3c4 net/core/dev.c:1508 dev_close_many+0x1e0/0x470 net/core/dev.c:1559 dev_close+0x174/0x250 net/core/dev.c:1585 bond_enslave+0x2298/0x30cc drivers/net/bonding/bond_main.c:2332 bond_do_ioctl+0x268/0xc64 drivers/net/bonding/bond_main.c:4539 dev_ifsioc+0x754/0x9ac dev_ioctl+0x4d8/0xd34 net/core/dev_ioctl.c:786 sock_do_ioctl+0x1d4/0x2d0 net/socket.c:1217 sock_ioctl+0x4e8/0x834 net/socket.c:1322 vfs_ioctl fs/ioctl.c:51 [inline] __do_ ---truncated---
CVE-2021-47429 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-09-25 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: powerpc/64s: Fix unrecoverable MCE calling async handler from NMI The machine check handler is not considered NMI on 64s. The early handler is the true NMI handler, and then it schedules the machine_check_exception handler to run when interrupts are enabled. This works fine except the case of an unrecoverable MCE, where the true NMI is taken when MSR[RI] is clear, it can not recover, so it calls machine_check_exception directly so something might be done about it. Calling an async handler from NMI context can result in irq state and other things getting corrupted. This can also trigger the BUG at arch/powerpc/include/asm/interrupt.h:168 BUG_ON(!arch_irq_disabled_regs(regs) && !(regs->msr & MSR_EE)); Fix this by making an _async version of the handler which is called in the normal case, and a NMI version that is called for unrecoverable interrupts.
CVE-2024-57806 1 Linux 1 Linux Kernel 2025-09-24 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix transaction atomicity bug when enabling simple quotas Set squota incompat bit before committing the transaction that enables the feature. With the config CONFIG_BTRFS_ASSERT enabled, an assertion failure occurs regarding the simple quota feature. [5.596534] assertion failed: btrfs_fs_incompat(fs_info, SIMPLE_QUOTA), in fs/btrfs/qgroup.c:365 [5.597098] ------------[ cut here ]------------ [5.597371] kernel BUG at fs/btrfs/qgroup.c:365! [5.597946] CPU: 1 UID: 0 PID: 268 Comm: mount Not tainted 6.13.0-rc2-00031-gf92f4749861b #146 [5.598450] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014 [5.599008] RIP: 0010:btrfs_read_qgroup_config+0x74d/0x7a0 [5.604303] <TASK> [5.605230] ? btrfs_read_qgroup_config+0x74d/0x7a0 [5.605538] ? exc_invalid_op+0x56/0x70 [5.605775] ? btrfs_read_qgroup_config+0x74d/0x7a0 [5.606066] ? asm_exc_invalid_op+0x1f/0x30 [5.606441] ? btrfs_read_qgroup_config+0x74d/0x7a0 [5.606741] ? btrfs_read_qgroup_config+0x74d/0x7a0 [5.607038] ? try_to_wake_up+0x317/0x760 [5.607286] open_ctree+0xd9c/0x1710 [5.607509] btrfs_get_tree+0x58a/0x7e0 [5.608002] vfs_get_tree+0x2e/0x100 [5.608224] fc_mount+0x16/0x60 [5.608420] btrfs_get_tree+0x2f8/0x7e0 [5.608897] vfs_get_tree+0x2e/0x100 [5.609121] path_mount+0x4c8/0xbc0 [5.609538] __x64_sys_mount+0x10d/0x150 The issue can be easily reproduced using the following reproducer: root@q:linux# cat repro.sh set -e mkfs.btrfs -q -f /dev/sdb mount /dev/sdb /mnt/btrfs btrfs quota enable -s /mnt/btrfs umount /mnt/btrfs mount /dev/sdb /mnt/btrfs The issue is that when enabling quotas, at btrfs_quota_enable(), we set BTRFS_QGROUP_STATUS_FLAG_SIMPLE_MODE at fs_info->qgroup_flags and persist it in the quota root in the item with the key BTRFS_QGROUP_STATUS_KEY, but we only set the incompat bit BTRFS_FEATURE_INCOMPAT_SIMPLE_QUOTA after we commit the transaction used to enable simple quotas. This means that if after that transaction commit we unmount the filesystem without starting and committing any other transaction, or we have a power failure, the next time we mount the filesystem we will find the flag BTRFS_QGROUP_STATUS_FLAG_SIMPLE_MODE set in the item with the key BTRFS_QGROUP_STATUS_KEY but we will not find the incompat bit BTRFS_FEATURE_INCOMPAT_SIMPLE_QUOTA set in the superblock, triggering an assertion failure at: btrfs_read_qgroup_config() -> qgroup_read_enable_gen() To fix this issue, set the BTRFS_FEATURE_INCOMPAT_SIMPLE_QUOTA flag immediately after setting the BTRFS_QGROUP_STATUS_FLAG_SIMPLE_MODE. This ensures that both flags are flushed to disk within the same transaction.
CVE-2021-47450 1 Linux 1 Linux Kernel 2025-09-24 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: KVM: arm64: Fix host stage-2 PGD refcount The KVM page-table library refcounts the pages of concatenated stage-2 PGDs individually. However, when running KVM in protected mode, the host's stage-2 PGD is currently managed by EL2 as a single high-order compound page, which can cause the refcount of the tail pages to reach 0 when they shouldn't, hence corrupting the page-table. Fix this by introducing a new hyp_split_page() helper in the EL2 page allocator (matching the kernel's split_page() function), and make use of it from host_s2_zalloc_pages_exact().
CVE-2023-52836 1 Linux 1 Linux Kernel 2025-09-23 7.8 High
In the Linux kernel, the following vulnerability has been resolved: locking/ww_mutex/test: Fix potential workqueue corruption In some cases running with the test-ww_mutex code, I was seeing odd behavior where sometimes it seemed flush_workqueue was returning before all the work threads were finished. Often this would cause strange crashes as the mutexes would be freed while they were being used. Looking at the code, there is a lifetime problem as the controlling thread that spawns the work allocates the "struct stress" structures that are passed to the workqueue threads. Then when the workqueue threads are finished, they free the stress struct that was passed to them. Unfortunately the workqueue work_struct node is in the stress struct. Which means the work_struct is freed before the work thread returns and while flush_workqueue is waiting. It seems like a better idea to have the controlling thread both allocate and free the stress structures, so that we can be sure we don't corrupt the workqueue by freeing the structure prematurely. So this patch reworks the test to do so, and with this change I no longer see the early flush_workqueue returns.
CVE-2023-52831 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-09-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cpu/hotplug: Don't offline the last non-isolated CPU If a system has isolated CPUs via the "isolcpus=" command line parameter, then an attempt to offline the last housekeeping CPU will result in a WARN_ON() when rebuilding the scheduler domains and a subsequent panic due to and unhandled empty CPU mas in partition_sched_domains_locked(). cpuset_hotplug_workfn() rebuild_sched_domains_locked() ndoms = generate_sched_domains(&doms, &attr); cpumask_and(doms[0], top_cpuset.effective_cpus, housekeeping_cpumask(HK_FLAG_DOMAIN)); Thus results in an empty CPU mask which triggers the warning and then the subsequent crash: WARNING: CPU: 4 PID: 80 at kernel/sched/topology.c:2366 build_sched_domains+0x120c/0x1408 Call trace: build_sched_domains+0x120c/0x1408 partition_sched_domains_locked+0x234/0x880 rebuild_sched_domains_locked+0x37c/0x798 rebuild_sched_domains+0x30/0x58 cpuset_hotplug_workfn+0x2a8/0x930 Unable to handle kernel paging request at virtual address fffe80027ab37080 partition_sched_domains_locked+0x318/0x880 rebuild_sched_domains_locked+0x37c/0x798 Aside of the resulting crash, it does not make any sense to offline the last last housekeeping CPU. Prevent this by masking out the non-housekeeping CPUs when selecting a target CPU for initiating the CPU unplug operation via the work queue.
CVE-2023-52754 1 Linux 1 Linux Kernel 2025-09-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: imon: fix access to invalid resource for the second interface imon driver probes two USB interfaces, and at the probe of the second interface, the driver assumes blindly that the first interface got bound with the same imon driver. It's usually true, but it's still possible that the first interface is bound with another driver via a malformed descriptor. Then it may lead to a memory corruption, as spotted by syzkaller; imon driver accesses the data from drvdata as struct imon_context object although it's a completely different one that was assigned by another driver. This patch adds a sanity check -- whether the first interface is really bound with the imon driver or not -- for avoiding the problem above at the probe time.
CVE-2022-49345 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-09-22 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: xfrm: unexport __init-annotated xfrm4_protocol_init() EXPORT_SYMBOL and __init is a bad combination because the .init.text section is freed up after the initialization. Hence, modules cannot use symbols annotated __init. The access to a freed symbol may end up with kernel panic. modpost used to detect it, but it has been broken for a decade. Recently, I fixed modpost so it started to warn it again, then this showed up in linux-next builds. There are two ways to fix it: - Remove __init - Remove EXPORT_SYMBOL I chose the latter for this case because the only in-tree call-site, net/ipv4/xfrm4_policy.c is never compiled as modular. (CONFIG_XFRM is boolean)
CVE-2024-36963 1 Linux 1 Linux Kernel 2025-09-17 7.8 High
In the Linux kernel, the following vulnerability has been resolved: tracefs: Reset permissions on remount if permissions are options There's an inconsistency with the way permissions are handled in tracefs. Because the permissions are generated when accessed, they default to the root inode's permission if they were never set by the user. If the user sets the permissions, then a flag is set and the permissions are saved via the inode (for tracefs files) or an internal attribute field (for eventfs). But if a remount happens that specify the permissions, all the files that were not changed by the user gets updated, but the ones that were are not. If the user were to remount the file system with a given permission, then all files and directories within that file system should be updated. This can cause security issues if a file's permission was updated but the admin forgot about it. They could incorrectly think that remounting with permissions set would update all files, but miss some. For example: # cd /sys/kernel/tracing # chgrp 1002 current_tracer # ls -l [..] -rw-r----- 1 root root 0 May 1 21:25 buffer_size_kb -rw-r----- 1 root root 0 May 1 21:25 buffer_subbuf_size_kb -r--r----- 1 root root 0 May 1 21:25 buffer_total_size_kb -rw-r----- 1 root lkp 0 May 1 21:25 current_tracer -rw-r----- 1 root root 0 May 1 21:25 dynamic_events -r--r----- 1 root root 0 May 1 21:25 dyn_ftrace_total_info -r--r----- 1 root root 0 May 1 21:25 enabled_functions Where current_tracer now has group "lkp". # mount -o remount,gid=1001 . # ls -l -rw-r----- 1 root tracing 0 May 1 21:25 buffer_size_kb -rw-r----- 1 root tracing 0 May 1 21:25 buffer_subbuf_size_kb -r--r----- 1 root tracing 0 May 1 21:25 buffer_total_size_kb -rw-r----- 1 root lkp 0 May 1 21:25 current_tracer -rw-r----- 1 root tracing 0 May 1 21:25 dynamic_events -r--r----- 1 root tracing 0 May 1 21:25 dyn_ftrace_total_info -r--r----- 1 root tracing 0 May 1 21:25 enabled_functions Everything changed but the "current_tracer". Add a new link list that keeps track of all the tracefs_inodes which has the permission flags that tell if the file/dir should use the root inode's permission or not. Then on remount, clear all the flags so that the default behavior of using the root inode's permission is done for all files and directories.
CVE-2021-47618 1 Linux 1 Linux Kernel 2025-09-17 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ARM: 9170/1: fix panic when kasan and kprobe are enabled arm32 uses software to simulate the instruction replaced by kprobe. some instructions may be simulated by constructing assembly functions. therefore, before executing instruction simulation, it is necessary to construct assembly function execution environment in C language through binding registers. after kasan is enabled, the register binding relationship will be destroyed, resulting in instruction simulation errors and causing kernel panic. the kprobe emulate instruction function is distributed in three files: actions-common.c actions-arm.c actions-thumb.c, so disable KASAN when compiling these files. for example, use kprobe insert on cap_capable+20 after kasan enabled, the cap_capable assembly code is as follows: <cap_capable>: e92d47f0 push {r4, r5, r6, r7, r8, r9, sl, lr} e1a05000 mov r5, r0 e280006c add r0, r0, #108 ; 0x6c e1a04001 mov r4, r1 e1a06002 mov r6, r2 e59fa090 ldr sl, [pc, #144] ; ebfc7bf8 bl c03aa4b4 <__asan_load4> e595706c ldr r7, [r5, #108] ; 0x6c e2859014 add r9, r5, #20 ...... The emulate_ldr assembly code after enabling kasan is as follows: c06f1384 <emulate_ldr>: e92d47f0 push {r4, r5, r6, r7, r8, r9, sl, lr} e282803c add r8, r2, #60 ; 0x3c e1a05000 mov r5, r0 e7e37855 ubfx r7, r5, #16, #4 e1a00008 mov r0, r8 e1a09001 mov r9, r1 e1a04002 mov r4, r2 ebf35462 bl c03c6530 <__asan_load4> e357000f cmp r7, #15 e7e36655 ubfx r6, r5, #12, #4 e205a00f and sl, r5, #15 0a000001 beq c06f13bc <emulate_ldr+0x38> e0840107 add r0, r4, r7, lsl #2 ebf3545c bl c03c6530 <__asan_load4> e084010a add r0, r4, sl, lsl #2 ebf3545a bl c03c6530 <__asan_load4> e2890010 add r0, r9, #16 ebf35458 bl c03c6530 <__asan_load4> e5990010 ldr r0, [r9, #16] e12fff30 blx r0 e356000f cm r6, #15 1a000014 bne c06f1430 <emulate_ldr+0xac> e1a06000 mov r6, r0 e2840040 add r0, r4, #64 ; 0x40 ...... when running in emulate_ldr to simulate the ldr instruction, panic occurred, and the log is as follows: Unable to handle kernel NULL pointer dereference at virtual address 00000090 pgd = ecb46400 [00000090] *pgd=2e0fa003, *pmd=00000000 Internal error: Oops: 206 [#1] SMP ARM PC is at cap_capable+0x14/0xb0 LR is at emulate_ldr+0x50/0xc0 psr: 600d0293 sp : ecd63af8 ip : 00000004 fp : c0a7c30c r10: 00000000 r9 : c30897f4 r8 : ecd63cd4 r7 : 0000000f r6 : 0000000a r5 : e59fa090 r4 : ecd63c98 r3 : c06ae294 r2 : 00000000 r1 : b7611300 r0 : bf4ec008 Flags: nZCv IRQs off FIQs on Mode SVC_32 ISA ARM Segment user Control: 32c5387d Table: 2d546400 DAC: 55555555 Process bash (pid: 1643, stack limit = 0xecd60190) (cap_capable) from (kprobe_handler+0x218/0x340) (kprobe_handler) from (kprobe_trap_handler+0x24/0x48) (kprobe_trap_handler) from (do_undefinstr+0x13c/0x364) (do_undefinstr) from (__und_svc_finish+0x0/0x30) (__und_svc_finish) from (cap_capable+0x18/0xb0) (cap_capable) from (cap_vm_enough_memory+0x38/0x48) (cap_vm_enough_memory) from (security_vm_enough_memory_mm+0x48/0x6c) (security_vm_enough_memory_mm) from (copy_process.constprop.5+0x16b4/0x25c8) (copy_process.constprop.5) from (_do_fork+0xe8/0x55c) (_do_fork) from (SyS_clone+0x1c/0x24) (SyS_clone) from (__sys_trace_return+0x0/0x10) Code: 0050a0e1 6c0080e2 0140a0e1 0260a0e1 (f801f0e7)
CVE-2024-38610 1 Linux 1 Linux Kernel 2025-09-17 7.8 High
In the Linux kernel, the following vulnerability has been resolved: drivers/virt/acrn: fix PFNMAP PTE checks in acrn_vm_ram_map() Patch series "mm: follow_pte() improvements and acrn follow_pte() fixes". Patch #1 fixes a bunch of issues I spotted in the acrn driver. It compiles, that's all I know. I'll appreciate some review and testing from acrn folks. Patch #2+#3 improve follow_pte(), passing a VMA instead of the MM, adding more sanity checks, and improving the documentation. Gave it a quick test on x86-64 using VM_PAT that ends up using follow_pte(). This patch (of 3): We currently miss handling various cases, resulting in a dangerous follow_pte() (previously follow_pfn()) usage. (1) We're not checking PTE write permissions. Maybe we should simply always require pte_write() like we do for pin_user_pages_fast(FOLL_WRITE)? Hard to tell, so let's check for ACRN_MEM_ACCESS_WRITE for now. (2) We're not rejecting refcounted pages. As we are not using MMU notifiers, messing with refcounted pages is dangerous and can result in use-after-free. Let's make sure to reject them. (3) We are only looking at the first PTE of a bigger range. We only lookup a single PTE, but memmap->len may span a larger area. Let's loop over all involved PTEs and make sure the PFN range is actually contiguous. Reject everything else: it couldn't have worked either way, and rather made use access PFNs we shouldn't be accessing.
CVE-2024-39293 1 Linux 1 Linux Kernel 2025-09-17 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: Revert "xsk: Support redirect to any socket bound to the same umem" This reverts commit 2863d665ea41282379f108e4da6c8a2366ba66db. This patch introduced a potential kernel crash when multiple napi instances redirect to the same AF_XDP socket. By removing the queue_index check, it is possible for multiple napi instances to access the Rx ring at the same time, which will result in a corrupted ring state which can lead to a crash when flushing the rings in __xsk_flush(). This can happen when the linked list of sockets to flush gets corrupted by concurrent accesses. A quick and small fix is not possible, so let us revert this for now.
CVE-2024-40918 1 Linux 1 Linux Kernel 2025-09-17 6.3 Medium
In the Linux kernel, the following vulnerability has been resolved: parisc: Try to fix random segmentation faults in package builds PA-RISC systems with PA8800 and PA8900 processors have had problems with random segmentation faults for many years. Systems with earlier processors are much more stable. Systems with PA8800 and PA8900 processors have a large L2 cache which needs per page flushing for decent performance when a large range is flushed. The combined cache in these systems is also more sensitive to non-equivalent aliases than the caches in earlier systems. The majority of random segmentation faults that I have looked at appear to be memory corruption in memory allocated using mmap and malloc. My first attempt at fixing the random faults didn't work. On reviewing the cache code, I realized that there were two issues which the existing code didn't handle correctly. Both relate to cache move-in. Another issue is that the present bit in PTEs is racy. 1) PA-RISC caches have a mind of their own and they can speculatively load data and instructions for a page as long as there is a entry in the TLB for the page which allows move-in. TLBs are local to each CPU. Thus, the TLB entry for a page must be purged before flushing the page. This is particularly important on SMP systems. In some of the flush routines, the flush routine would be called and then the TLB entry would be purged. This was because the flush routine needed the TLB entry to do the flush. 2) My initial approach to trying the fix the random faults was to try and use flush_cache_page_if_present for all flush operations. This actually made things worse and led to a couple of hardware lockups. It finally dawned on me that some lines weren't being flushed because the pte check code was racy. This resulted in random inequivalent mappings to physical pages. The __flush_cache_page tmpalias flush sets up its own TLB entry and it doesn't need the existing TLB entry. As long as we can find the pte pointer for the vm page, we can get the pfn and physical address of the page. We can also purge the TLB entry for the page before doing the flush. Further, __flush_cache_page uses a special TLB entry that inhibits cache move-in. When switching page mappings, we need to ensure that lines are removed from the cache. It is not sufficient to just flush the lines to memory as they may come back. This made it clear that we needed to implement all the required flush operations using tmpalias routines. This includes flushes for user and kernel pages. After modifying the code to use tmpalias flushes, it became clear that the random segmentation faults were not fully resolved. The frequency of faults was worse on systems with a 64 MB L2 (PA8900) and systems with more CPUs (rp4440). The warning that I added to flush_cache_page_if_present to detect pages that couldn't be flushed triggered frequently on some systems. Helge and I looked at the pages that couldn't be flushed and found that the PTE was either cleared or for a swap page. Ignoring pages that were swapped out seemed okay but pages with cleared PTEs seemed problematic. I looked at routines related to pte_clear and noticed ptep_clear_flush. The default implementation just flushes the TLB entry. However, it was obvious that on parisc we need to flush the cache page as well. If we don't flush the cache page, stale lines will be left in the cache and cause random corruption. Once a PTE is cleared, there is no way to find the physical address associated with the PTE and flush the associated page at a later time. I implemented an updated change with a parisc specific version of ptep_clear_flush. It fixed the random data corruption on Helge's rp4440 and rp3440, as well as on my c8000. At this point, I realized that I could restore the code where we only flush in flush_cache_page_if_present if the page has been accessed. However, for this, we also need to flush the cache when the accessed bit is cleared in ---truncated---
CVE-2023-52620 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-09-16 2.5 Low
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: disallow timeout for anonymous sets Never used from userspace, disallow these parameters.
CVE-2025-43491 2 Hp, Microsoft 2 Poly Lens, Windows 2025-09-12 N/A
A vulnerability in the Poly Lens Desktop application running on the Windows platform might allow modifications to the filesystem, which might lead to SYSTEM level privileges being granted.
CVE-2025-9263 1 Xuxueli 1 Xxl-job 2025-09-11 4.3 Medium
A vulnerability has been found in Xuxueli xxl-job up to 3.1.1. Affected by this vulnerability is the function getJobsByGroup of the file /src/main/java/com/xxl/job/admin/controller/JobLogController.java. Such manipulation of the argument jobGroup leads to improper control of resource identifiers. The attack may be launched remotely. The exploit has been disclosed to the public and may be used.
CVE-2025-9264 1 Xuxueli 1 Xxl-job 2025-09-11 5.4 Medium
A vulnerability was found in Xuxueli xxl-job up to 3.1.1. Affected by this issue is the function remove of the file /src/main/java/com/xxl/job/admin/controller/JobInfoController.java of the component Jobs Handler. Performing manipulation of the argument ID results in improper control of resource identifiers. Remote exploitation of the attack is possible. The exploit has been made public and could be used.