| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| ImageMagick is free and open-source software used for editing and manipulating digital images. Versions 14.10.1 and below have a NULL pointer dereference vulnerability in the MSL (Magick Scripting Language) parser when processing <comment> tags before images are loaded. This can lead to DoS attack due to assertion failure (debug builds) or NULL pointer dereference (release builds). This issue is fixed in version 14.10.2. |
| A flaw was found in libssh, a library that implements the SSH protocol. When calculating the session ID during the key exchange (KEX) process, an allocation failure in cryptographic functions may lead to a NULL pointer dereference. This issue can cause the client or server to crash. |
| A NULL pointer dereference flaw was found in the GnuTLS software in _gnutls_figure_common_ciphersuite(). |
| In the Linux kernel, the following vulnerability has been resolved:
drm/vmwgfx: Validate the box size for the snooped cursor
Invalid userspace dma surface copies could potentially overflow
the memcpy from the surface to the snooped image leading to crashes.
To fix it the dimensions of the copybox have to be validated
against the expected size of the snooped cursor. |
| EVerest is an EV charging software stack. Prior to version 2025.10.0, during the deserialization of a `DC_ChargeLoopRes` message that includes Receipt as well as TaxCosts, the vector `<DetailedTax>tax_costs` in the target `Receipt` structure is accessed out of bounds. This occurs in the method `template <> void convert(const struct iso20_dc_DetailedTaxType& in, datatypes::DetailedTax& out)` which leads to a null pointer dereference and causes the module to terminate. The EVerest processes and all its modules shut down, affecting all EVSE. Version 2025.10.0 fixes the issue. |
| A security flaw has been discovered in nicbarker clay up to 0.14. This affects the function Clay__MeasureTextCached in the library clay.h. The manipulation results in null pointer dereference. The attack is only possible with local access. The exploit has been released to the public and may be used for attacks. The project was informed of the problem early through an issue report but has not responded yet. |
| A NULL pointer dereference in the dacp_reply_playqueueedit_move function (src/httpd_dacp.c) of owntone-server commit b7e385f allows attackers to cause a Denial of Service (DoS) via sending a crafted DACP request to the server. |
| A NULL pointer dereference in the parse_meta function (src/httpd_daap.c) of owntone-server commit 334beb allows attackers to cause a Denial of Service (DoS) via sending a crafted DAAP request to the server. |
| NULL pointer dereference in the dacp_reply_playqueueedit_clear function in src/httpd_dacp.c in owntone-server through commit 6d604a1 (newer commit after version 28.12) allows remote attackers to cause a Denial of Service (crash). |
| NULL pointer dereference in the daap_reply_groups function in src/httpd_daap.c in owntone-server through commit 5e6f19a (newer commit after version 28.2) allows remote attackers to cause a Denial of Service. |
| A flaw was found in the FreeRDP used by Anaconda's remote install feature, where a crafted RDP packet could trigger a segmentation fault. This issue causes the service to crash and remain defunct, resulting in a denial of service. It occurs pre-boot and is likely due to a NULL pointer dereference. Rebooting is required to recover the system. |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: sch_qfq: Fix NULL deref when deactivating inactive aggregate in qfq_reset
`qfq_class->leaf_qdisc->q.qlen > 0` does not imply that the class
itself is active.
Two qfq_class objects may point to the same leaf_qdisc. This happens
when:
1. one QFQ qdisc is attached to the dev as the root qdisc, and
2. another QFQ qdisc is temporarily referenced (e.g., via qdisc_get()
/ qdisc_put()) and is pending to be destroyed, as in function
tc_new_tfilter.
When packets are enqueued through the root QFQ qdisc, the shared
leaf_qdisc->q.qlen increases. At the same time, the second QFQ
qdisc triggers qdisc_put and qdisc_destroy: the qdisc enters
qfq_reset() with its own q->q.qlen == 0, but its class's leaf
qdisc->q.qlen > 0. Therefore, the qfq_reset would wrongly deactivate
an inactive aggregate and trigger a null-deref in qfq_deactivate_agg:
[ 0.903172] BUG: kernel NULL pointer dereference, address: 0000000000000000
[ 0.903571] #PF: supervisor write access in kernel mode
[ 0.903860] #PF: error_code(0x0002) - not-present page
[ 0.904177] PGD 10299b067 P4D 10299b067 PUD 10299c067 PMD 0
[ 0.904502] Oops: Oops: 0002 [#1] SMP NOPTI
[ 0.904737] CPU: 0 UID: 0 PID: 135 Comm: exploit Not tainted 6.19.0-rc3+ #2 NONE
[ 0.905157] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.17.0-0-gb52ca86e094d-prebuilt.qemu.org 04/01/2014
[ 0.905754] RIP: 0010:qfq_deactivate_agg (include/linux/list.h:992 (discriminator 2) include/linux/list.h:1006 (discriminator 2) net/sched/sch_qfq.c:1367 (discriminator 2) net/sched/sch_qfq.c:1393 (discriminator 2))
[ 0.906046] Code: 0f 84 4d 01 00 00 48 89 70 18 8b 4b 10 48 c7 c2 ff ff ff ff 48 8b 78 08 48 d3 e2 48 21 f2 48 2b 13 48 8b 30 48 d3 ea 8b 4b 18 0
Code starting with the faulting instruction
===========================================
0: 0f 84 4d 01 00 00 je 0x153
6: 48 89 70 18 mov %rsi,0x18(%rax)
a: 8b 4b 10 mov 0x10(%rbx),%ecx
d: 48 c7 c2 ff ff ff ff mov $0xffffffffffffffff,%rdx
14: 48 8b 78 08 mov 0x8(%rax),%rdi
18: 48 d3 e2 shl %cl,%rdx
1b: 48 21 f2 and %rsi,%rdx
1e: 48 2b 13 sub (%rbx),%rdx
21: 48 8b 30 mov (%rax),%rsi
24: 48 d3 ea shr %cl,%rdx
27: 8b 4b 18 mov 0x18(%rbx),%ecx
...
[ 0.907095] RSP: 0018:ffffc900004a39a0 EFLAGS: 00010246
[ 0.907368] RAX: ffff8881043a0880 RBX: ffff888102953340 RCX: 0000000000000000
[ 0.907723] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
[ 0.908100] RBP: ffff888102952180 R08: 0000000000000000 R09: 0000000000000000
[ 0.908451] R10: ffff8881043a0000 R11: 0000000000000000 R12: ffff888102952000
[ 0.908804] R13: ffff888102952180 R14: ffff8881043a0ad8 R15: ffff8881043a0880
[ 0.909179] FS: 000000002a1a0380(0000) GS:ffff888196d8d000(0000) knlGS:0000000000000000
[ 0.909572] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 0.909857] CR2: 0000000000000000 CR3: 0000000102993002 CR4: 0000000000772ef0
[ 0.910247] PKRU: 55555554
[ 0.910391] Call Trace:
[ 0.910527] <TASK>
[ 0.910638] qfq_reset_qdisc (net/sched/sch_qfq.c:357 net/sched/sch_qfq.c:1485)
[ 0.910826] qdisc_reset (include/linux/skbuff.h:2195 include/linux/skbuff.h:2501 include/linux/skbuff.h:3424 include/linux/skbuff.h:3430 net/sched/sch_generic.c:1036)
[ 0.911040] __qdisc_destroy (net/sched/sch_generic.c:1076)
[ 0.911236] tc_new_tfilter (net/sched/cls_api.c:2447)
[ 0.911447] rtnetlink_rcv_msg (net/core/rtnetlink.c:6958)
[ 0.911663] ? __pfx_rtnetlink_rcv_msg (net/core/rtnetlink.c:6861)
[ 0.911894] netlink_rcv_skb (net/netlink/af_netlink.c:2550)
[ 0.912100] netlink_unicast (net/netlink/af_netlink.c:1319 net/netlink/af_netlink.c:1344)
[ 0.912296] ? __alloc_skb (net/core/skbuff.c:706)
[ 0.912484] netlink_sendmsg (net/netlink/af
---truncated--- |
| Null pointer dereference in Windows Local Security Authority Subsystem Service (LSASS) allows an unauthorized attacker to deny service over a network. |
| In the Linux kernel, the following vulnerability has been resolved:
net/smc: fix one NULL pointer dereference in smc_ib_is_sg_need_sync()
BUG: kernel NULL pointer dereference, address: 00000000000002ec
PGD 0 P4D 0
Oops: Oops: 0000 [#1] SMP PTI
CPU: 28 UID: 0 PID: 343 Comm: kworker/28:1 Kdump: loaded Tainted: G OE 6.17.0-rc2+ #9 NONE
Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014
Workqueue: smc_hs_wq smc_listen_work [smc]
RIP: 0010:smc_ib_is_sg_need_sync+0x9e/0xd0 [smc]
...
Call Trace:
<TASK>
smcr_buf_map_link+0x211/0x2a0 [smc]
__smc_buf_create+0x522/0x970 [smc]
smc_buf_create+0x3a/0x110 [smc]
smc_find_rdma_v2_device_serv+0x18f/0x240 [smc]
? smc_vlan_by_tcpsk+0x7e/0xe0 [smc]
smc_listen_find_device+0x1dd/0x2b0 [smc]
smc_listen_work+0x30f/0x580 [smc]
process_one_work+0x18c/0x340
worker_thread+0x242/0x360
kthread+0xe7/0x220
ret_from_fork+0x13a/0x160
ret_from_fork_asm+0x1a/0x30
</TASK>
If the software RoCE device is used, ibdev->dma_device is a null pointer.
As a result, the problem occurs. Null pointer detection is added to
prevent problems. |
| In the Linux kernel, the following vulnerability has been resolved:
tee: fix NULL pointer dereference in tee_shm_put
tee_shm_put have NULL pointer dereference:
__optee_disable_shm_cache -->
shm = reg_pair_to_ptr(...);//shm maybe return NULL
tee_shm_free(shm); -->
tee_shm_put(shm);//crash
Add check in tee_shm_put to fix it.
panic log:
Unable to handle kernel paging request at virtual address 0000000000100cca
Mem abort info:
ESR = 0x0000000096000004
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x04: level 0 translation fault
Data abort info:
ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000
CM = 0, WnR = 0, TnD = 0, TagAccess = 0
GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
user pgtable: 4k pages, 48-bit VAs, pgdp=0000002049d07000
[0000000000100cca] pgd=0000000000000000, p4d=0000000000000000
Internal error: Oops: 0000000096000004 [#1] SMP
CPU: 2 PID: 14442 Comm: systemd-sleep Tainted: P OE ------- ----
6.6.0-39-generic #38
Source Version: 938b255f6cb8817c95b0dd5c8c2944acfce94b07
Hardware name: greatwall GW-001Y1A-FTH, BIOS Great Wall BIOS V3.0
10/26/2022
pstate: 80000005 (Nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : tee_shm_put+0x24/0x188
lr : tee_shm_free+0x14/0x28
sp : ffff001f98f9faf0
x29: ffff001f98f9faf0 x28: ffff0020df543cc0 x27: 0000000000000000
x26: ffff001f811344a0 x25: ffff8000818dac00 x24: ffff800082d8d048
x23: ffff001f850fcd18 x22: 0000000000000001 x21: ffff001f98f9fb88
x20: ffff001f83e76218 x19: ffff001f83e761e0 x18: 000000000000ffff
x17: 303a30303a303030 x16: 0000000000000000 x15: 0000000000000003
x14: 0000000000000001 x13: 0000000000000000 x12: 0101010101010101
x11: 0000000000000001 x10: 0000000000000001 x9 : ffff800080e08d0c
x8 : ffff001f98f9fb88 x7 : 0000000000000000 x6 : 0000000000000000
x5 : 0000000000000000 x4 : 0000000000000000 x3 : 0000000000000000
x2 : ffff001f83e761e0 x1 : 00000000ffff001f x0 : 0000000000100cca
Call trace:
tee_shm_put+0x24/0x188
tee_shm_free+0x14/0x28
__optee_disable_shm_cache+0xa8/0x108
optee_shutdown+0x28/0x38
platform_shutdown+0x28/0x40
device_shutdown+0x144/0x2b0
kernel_power_off+0x3c/0x80
hibernate+0x35c/0x388
state_store+0x64/0x80
kobj_attr_store+0x14/0x28
sysfs_kf_write+0x48/0x60
kernfs_fop_write_iter+0x128/0x1c0
vfs_write+0x270/0x370
ksys_write+0x6c/0x100
__arm64_sys_write+0x20/0x30
invoke_syscall+0x4c/0x120
el0_svc_common.constprop.0+0x44/0xf0
do_el0_svc+0x24/0x38
el0_svc+0x24/0x88
el0t_64_sync_handler+0x134/0x150
el0t_64_sync+0x14c/0x15 |
| In the Linux kernel, the following vulnerability has been resolved:
net: fec: Fix possible NPD in fec_enet_phy_reset_after_clk_enable()
The function of_phy_find_device may return NULL, so we need to take
care before dereferencing phy_dev. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/fpu: Fix copy_xstate_to_uabi() to copy init states correctly
When an extended state component is not present in fpstate, but in init
state, the function copies from init_fpstate via copy_feature().
But, dynamic states are not present in init_fpstate because of all-zeros
init states. Then retrieving them from init_fpstate will explode like this:
BUG: kernel NULL pointer dereference, address: 0000000000000000
...
RIP: 0010:memcpy_erms+0x6/0x10
? __copy_xstate_to_uabi_buf+0x381/0x870
fpu_copy_guest_fpstate_to_uabi+0x28/0x80
kvm_arch_vcpu_ioctl+0x14c/0x1460 [kvm]
? __this_cpu_preempt_check+0x13/0x20
? vmx_vcpu_put+0x2e/0x260 [kvm_intel]
kvm_vcpu_ioctl+0xea/0x6b0 [kvm]
? kvm_vcpu_ioctl+0xea/0x6b0 [kvm]
? __fget_light+0xd4/0x130
__x64_sys_ioctl+0xe3/0x910
? debug_smp_processor_id+0x17/0x20
? fpregs_assert_state_consistent+0x27/0x50
do_syscall_64+0x3f/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Adjust the 'mask' to zero out the userspace buffer for the features that
are not available both from fpstate and from init_fpstate.
The dynamic features depend on the compacted XSAVE format. Ensure it is
enabled before reading XCOMP_BV in init_fpstate. |
| In the Linux kernel, the following vulnerability has been resolved:
pwm: lpc32xx: Remove handling of PWM channels
Because LPC32xx PWM controllers have only a single output which is
registered as the only PWM device/channel per controller, it is known in
advance that pwm->hwpwm value is always 0. On basis of this fact
simplify the code by removing operations with pwm->hwpwm, there is no
controls which require channel number as input.
Even though I wasn't aware at the time when I forward ported that patch,
this fixes a null pointer dereference as lpc32xx->chip.pwms is NULL
before devm_pwmchip_add() is called. |
| In the Linux kernel, the following vulnerability has been resolved:
iw_cxgb4: Fix potential NULL dereference in c4iw_fill_res_cm_id_entry()
This condition needs to match the previous "if (epcp->state == LISTEN) {"
exactly to avoid a NULL dereference of either "listen_ep" or "ep". The
problem is that "epcp" has been re-assigned so just testing
"if (epcp->state == LISTEN) {" a second time is not sufficient. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Lag, fix failure to cancel delayed bond work
Commit 0d4e8ed139d8 ("net/mlx5: Lag, avoid lockdep warnings")
accidentally removed a call to cancel delayed bond work thus it may
cause queued delay to expire and fall on an already destroyed work
queue.
Fix by restoring the call cancel_delayed_work_sync() before
destroying the workqueue.
This prevents call trace such as this:
[ 329.230417] BUG: kernel NULL pointer dereference, address: 0000000000000000
[ 329.231444] #PF: supervisor write access in kernel mode
[ 329.232233] #PF: error_code(0x0002) - not-present page
[ 329.233007] PGD 0 P4D 0
[ 329.233476] Oops: 0002 [#1] SMP
[ 329.234012] CPU: 5 PID: 145 Comm: kworker/u20:4 Tainted: G OE 6.0.0-rc5_mlnx #1
[ 329.235282] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
[ 329.236868] Workqueue: mlx5_cmd_0000:08:00.1 cmd_work_handler [mlx5_core]
[ 329.237886] RIP: 0010:_raw_spin_lock+0xc/0x20
[ 329.238585] Code: f0 0f b1 17 75 02 f3 c3 89 c6 e9 6f 3c 5f ff 66 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 0f 1f 44 00 00 31 c0 ba 01 00 00 00 <f0> 0f b1 17 75 02 f3 c3 89 c6 e9 45 3c 5f ff 0f 1f 44 00 00 0f 1f
[ 329.241156] RSP: 0018:ffffc900001b0e98 EFLAGS: 00010046
[ 329.241940] RAX: 0000000000000000 RBX: ffffffff82374ae0 RCX: 0000000000000000
[ 329.242954] RDX: 0000000000000001 RSI: 0000000000000014 RDI: 0000000000000000
[ 329.243974] RBP: ffff888106ccf000 R08: ffff8881004000c8 R09: ffff888100400000
[ 329.244990] R10: 0000000000000000 R11: ffffffff826669f8 R12: 0000000000002000
[ 329.246009] R13: 0000000000000005 R14: ffff888100aa7ce0 R15: ffff88852ca80000
[ 329.247030] FS: 0000000000000000(0000) GS:ffff88852ca80000(0000) knlGS:0000000000000000
[ 329.248260] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 329.249111] CR2: 0000000000000000 CR3: 000000016d675001 CR4: 0000000000770ee0
[ 329.250133] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 329.251152] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 329.252176] PKRU: 55555554 |