Total
2082 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2024-4418 | 1 Redhat | 3 Advanced Virtualization, Enterprise Linux, Rhel Eus | 2025-11-08 | 6.2 Medium |
| A race condition leading to a stack use-after-free flaw was found in libvirt. Due to a bad assumption in the virNetClientIOEventLoop() method, the `data` pointer to a stack-allocated virNetClientIOEventData structure ended up being used in the virNetClientIOEventFD callback while the data pointer's stack frame was concurrently being "freed" when returning from virNetClientIOEventLoop(). The 'virtproxyd' daemon can be used to trigger requests. If libvirt is configured with fine-grained access control, this issue, in theory, allows a user to escape their otherwise limited access. This flaw allows a local, unprivileged user to access virtproxyd without authenticating. Remote users would need to authenticate before they could access it. | ||||
| CVE-2024-7885 | 1 Redhat | 21 Apache Camel Hawtio, Apache Camel Spring Boot, Build Keycloak and 18 more | 2025-11-07 | 7.5 High |
| A vulnerability was found in Undertow where the ProxyProtocolReadListener reuses the same StringBuilder instance across multiple requests. This issue occurs when the parseProxyProtocolV1 method processes multiple requests on the same HTTP connection. As a result, different requests may share the same StringBuilder instance, potentially leading to information leakage between requests or responses. In some cases, a value from a previous request or response may be erroneously reused, which could lead to unintended data exposure. This issue primarily results in errors and connection termination but creates a risk of data leakage in multi-request environments. | ||||
| CVE-2024-6162 | 1 Redhat | 11 Apache Camel Hawtio, Apache Camel Spring Boot, Build Keycloak and 8 more | 2025-11-07 | 7.5 High |
| A vulnerability was found in Undertow, where URL-encoded request paths can be mishandled during concurrent requests on the AJP listener. This issue arises because the same buffer is used to decode the paths for multiple requests simultaneously, leading to incorrect path information being processed. As a result, the server may attempt to access the wrong path, causing errors such as "404 Not Found" or other application failures. This flaw can potentially lead to a denial of service, as legitimate resources become inaccessible due to the path mix-up. | ||||
| CVE-2022-49798 | 1 Linux | 1 Linux Kernel | 2025-11-07 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: tracing: Fix race where eprobes can be called before the event The flag that tells the event to call its triggers after reading the event is set for eprobes after the eprobe is enabled. This leads to a race where the eprobe may be triggered at the beginning of the event where the record information is NULL. The eprobe then dereferences the NULL record causing a NULL kernel pointer bug. Test for a NULL record to keep this from happening. | ||||
| CVE-2022-49814 | 1 Linux | 1 Linux Kernel | 2025-11-07 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: kcm: close race conditions on sk_receive_queue sk->sk_receive_queue is protected by skb queue lock, but for KCM sockets its RX path takes mux->rx_lock to protect more than just skb queue. However, kcm_recvmsg() still only grabs the skb queue lock, so race conditions still exist. We can teach kcm_recvmsg() to grab mux->rx_lock too but this would introduce a potential performance regression as struct kcm_mux can be shared by multiple KCM sockets. So we have to enforce skb queue lock in requeue_rx_msgs() and handle skb peek case carefully in kcm_wait_data(). Fortunately, skb_recv_datagram() already handles it nicely and is widely used by other sockets, we can just switch to skb_recv_datagram() after getting rid of the unnecessary sock lock in kcm_recvmsg() and kcm_splice_read(). Side note: SOCK_DONE is not used by KCM sockets, so it is safe to get rid of this check too. I ran the original syzbot reproducer for 30 min without seeing any issue. | ||||
| CVE-2022-49771 | 1 Linux | 1 Linux Kernel | 2025-11-07 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: dm ioctl: fix misbehavior if list_versions races with module loading __list_versions will first estimate the required space using the "dm_target_iterate(list_version_get_needed, &needed)" call and then will fill the space using the "dm_target_iterate(list_version_get_info, &iter_info)" call. Each of these calls locks the targets using the "down_read(&_lock)" and "up_read(&_lock)" calls, however between the first and second "dm_target_iterate" there is no lock held and the target modules can be loaded at this point, so the second "dm_target_iterate" call may need more space than what was the first "dm_target_iterate" returned. The code tries to handle this overflow (see the beginning of list_version_get_info), however this handling is incorrect. The code sets "param->data_size = param->data_start + needed" and "iter_info.end = (char *)vers+len" - "needed" is the size returned by the first dm_target_iterate call; "len" is the size of the buffer allocated by userspace. "len" may be greater than "needed"; in this case, the code will write up to "len" bytes into the buffer, however param->data_size is set to "needed", so it may write data past the param->data_size value. The ioctl interface copies only up to param->data_size into userspace, thus part of the result will be truncated. Fix this bug by setting "iter_info.end = (char *)vers + needed;" - this guarantees that the second "dm_target_iterate" call will write only up to the "needed" buffer and it will exit with "DM_BUFFER_FULL_FLAG" if it overflows the "needed" space - in this case, userspace will allocate a larger buffer and retry. Note that there is also a bug in list_version_get_needed - we need to add "strlen(tt->name) + 1" to the needed size, not "strlen(tt->name)". | ||||
| CVE-2022-49781 | 1 Linux | 1 Linux Kernel | 2025-11-07 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: perf/x86/amd: Fix crash due to race between amd_pmu_enable_all, perf NMI and throttling amd_pmu_enable_all() does: if (!test_bit(idx, cpuc->active_mask)) continue; amd_pmu_enable_event(cpuc->events[idx]); A perf NMI of another event can come between these two steps. Perf NMI handler internally disables and enables _all_ events, including the one which nmi-intercepted amd_pmu_enable_all() was in process of enabling. If that unintentionally enabled event has very low sampling period and causes immediate successive NMI, causing the event to be throttled, cpuc->events[idx] and cpuc->active_mask gets cleared by x86_pmu_stop(). This will result in amd_pmu_enable_event() getting called with event=NULL when amd_pmu_enable_all() resumes after handling the NMIs. This causes a kernel crash: BUG: kernel NULL pointer dereference, address: 0000000000000198 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page [...] Call Trace: <TASK> amd_pmu_enable_all+0x68/0xb0 ctx_resched+0xd9/0x150 event_function+0xb8/0x130 ? hrtimer_start_range_ns+0x141/0x4a0 ? perf_duration_warn+0x30/0x30 remote_function+0x4d/0x60 __flush_smp_call_function_queue+0xc4/0x500 flush_smp_call_function_queue+0x11d/0x1b0 do_idle+0x18f/0x2d0 cpu_startup_entry+0x19/0x20 start_secondary+0x121/0x160 secondary_startup_64_no_verify+0xe5/0xeb </TASK> amd_pmu_disable_all()/amd_pmu_enable_all() calls inside perf NMI handler were recently added as part of BRS enablement but I'm not sure whether we really need them. We can just disable BRS in the beginning and enable it back while returning from NMI. This will solve the issue by not enabling those events whose active_masks are set but are not yet enabled in hw pmu. | ||||
| CVE-2023-33951 | 2 Linux, Redhat | 5 Linux Kernel, Enterprise Linux, Enterprise Linux For Real Time and 2 more | 2025-11-07 | 6.7 Medium |
| A race condition vulnerability was found in the vmwgfx driver in the Linux kernel. The flaw exists within the handling of GEM objects. The issue results from improper locking when performing operations on an object. This flaw allows a local privileged user to disclose information in the context of the kernel. | ||||
| CVE-2023-4732 | 2 Linux, Redhat | 12 Linux Kernel, Codeready Linux Builder, Codeready Linux Builder For Arm64 and 9 more | 2025-11-07 | 4.7 Medium |
| A flaw was found in pfn_swap_entry_to_page in memory management subsystem in the Linux Kernel. In this flaw, an attacker with a local user privilege may cause a denial of service problem due to a BUG statement referencing pmd_t x. | ||||
| CVE-2023-3758 | 2 Fedoraproject, Redhat | 25 Fedora, Sssd, Codeready Linux Builder and 22 more | 2025-11-06 | 7.1 High |
| A race condition flaw was found in sssd where the GPO policy is not consistently applied for authenticated users. This may lead to improper authorization issues, granting or denying access to resources inappropriately. | ||||
| CVE-2025-24808 | 1 Discourse | 1 Discourse | 2025-11-06 | 4.3 Medium |
| Discourse is an open-source discussion platform. Prior to versions `3.3.4` on the `stable` branch and `3.4.0.beta5` on the `beta` branch, someone who is about to reach the limit of users in a group DM may send requests to add new users in parallel. The requests might all go through ignoring the limit due to a race condition. The patch in versions `3.3.4` and `3.4.0.beta5` uses the `lock` step in service to wrap part of the `add_users_to_channel` service inside a distributed lock/mutex in order to avoid the race condition. | ||||
| CVE-2024-12747 | 1 Redhat | 3 Discovery, Enterprise Linux, Openshift | 2025-11-06 | 5.6 Medium |
| A flaw was found in rsync. This vulnerability arises from a race condition during rsync's handling of symbolic links. Rsync's default behavior when encountering symbolic links is to skip them. If an attacker replaced a regular file with a symbolic link at the right time, it was possible to bypass the default behavior and traverse symbolic links. Depending on the privileges of the rsync process, an attacker could leak sensitive information, potentially leading to privilege escalation. | ||||
| CVE-2023-42756 | 4 Debian, Fedoraproject, Linux and 1 more | 4 Debian Linux, Fedora, Linux Kernel and 1 more | 2025-11-06 | 4.4 Medium |
| A flaw was found in the Netfilter subsystem of the Linux kernel. A race condition between IPSET_CMD_ADD and IPSET_CMD_SWAP can lead to a kernel panic due to the invocation of `__ip_set_put` on a wrong `set`. This issue may allow a local user to crash the system. | ||||
| CVE-2023-39198 | 3 Fedoraproject, Linux, Redhat | 3 Fedora, Linux Kernel, Enterprise Linux | 2025-11-06 | 7.5 High |
| A race condition was found in the QXL driver in the Linux kernel. The qxl_mode_dumb_create() function dereferences the qobj returned by the qxl_gem_object_create_with_handle(), but the handle is the only one holding a reference to it. This flaw allows an attacker to guess the returned handle value and trigger a use-after-free issue, potentially leading to a denial of service or privilege escalation. | ||||
| CVE-2023-6531 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-11-06 | 7 High |
| A use-after-free flaw was found in the Linux Kernel due to a race problem in the unix garbage collector's deletion of SKB races with unix_stream_read_generic() on the socket that the SKB is queued on. | ||||
| CVE-2023-6546 | 3 Fedoraproject, Linux, Redhat | 9 Fedora, Linux Kernel, Enterprise Linux and 6 more | 2025-11-06 | 7 High |
| A race condition was found in the GSM 0710 tty multiplexor in the Linux kernel. This issue occurs when two threads execute the GSMIOC_SETCONF ioctl on the same tty file descriptor with the gsm line discipline enabled, and can lead to a use-after-free problem on a struct gsm_dlci while restarting the gsm mux. This could allow a local unprivileged user to escalate their privileges on the system. | ||||
| CVE-2025-23151 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-11-05 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: bus: mhi: host: Fix race between unprepare and queue_buf A client driver may use mhi_unprepare_from_transfer() to quiesce incoming data during the client driver's tear down. The client driver might also be processing data at the same time, resulting in a call to mhi_queue_buf() which will invoke mhi_gen_tre(). If mhi_gen_tre() runs after mhi_unprepare_from_transfer() has torn down the channel, a panic will occur due to an invalid dereference leading to a page fault. This occurs because mhi_gen_tre() does not verify the channel state after locking it. Fix this by having mhi_gen_tre() confirm the channel state is valid, or return error to avoid accessing deinitialized data. [mani: added stable tag] | ||||
| CVE-2025-43420 | 1 Apple | 3 Macos, Macos Sequoia, Macos Sonoma | 2025-11-05 | 4.7 Medium |
| A race condition was addressed with improved state handling. This issue is fixed in macOS Sonoma 14.8.2, macOS Sequoia 15.7.2. An app may be able to access sensitive user data. | ||||
| CVE-2025-55231 | 1 Microsoft | 9 Server, Windows, Windows Server and 6 more | 2025-11-04 | 7.5 High |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Windows Storage allows an unauthorized attacker to execute code over a network. | ||||
| CVE-2025-53135 | 1 Microsoft | 20 Directx, Windows, Windows 10 and 17 more | 2025-11-04 | 7 High |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Windows DirectX allows an authorized attacker to elevate privileges locally. | ||||