Filtered by vendor Redhat
Subscriptions
Filtered by product Jboss Fuse
Subscriptions
Total
571 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2025-7195 | 1 Redhat | 12 Acm, Advanced Cluster Security, Apicurio Registry and 9 more | 2025-11-08 | 5.2 Medium |
| Early versions of Operator-SDK provided an insecure method to allow operator containers to run in environments that used a random UID. Operator-SDK before 0.15.2 provided a script, user_setup, which modifies the permissions of the /etc/passwd file to 664 during build time. Developers who used Operator-SDK before 0.15.2 to scaffold their operator may still be impacted by this if the insecure user_setup script is still being used to build new container images. In affected images, the /etc/passwd file is created during build time with group-writable permissions and a group ownership of root (gid=0). An attacker who can execute commands within an affected container, even as a non-root user, may be able to leverage their membership in the root group to modify the /etc/passwd file. This could allow the attacker to add a new user with any arbitrary UID, including UID 0, leading to full root privileges within the container. | ||||
| CVE-2023-6841 | 1 Redhat | 7 Jboss Enterprise Bpms Platform, Jboss Fuse, Keycloak and 4 more | 2025-11-08 | 7.5 High |
| A denial of service vulnerability was found in keycloak where the amount of attributes per object is not limited,an attacker by sending repeated HTTP requests could cause a resource exhaustion when the application send back rows with long attribute values. | ||||
| CVE-2025-9784 | 1 Redhat | 15 Apache Camel Hawtio, Build Of Apache Camel For Spring Boot, Camel Spring Boot and 12 more | 2025-11-07 | 7.5 High |
| A flaw was found in Undertow where malformed client requests can trigger server-side stream resets without triggering abuse counters. This issue, referred to as the "MadeYouReset" attack, allows malicious clients to induce excessive server workload by repeatedly causing server-side stream aborts. While not a protocol bug, this highlights a common implementation weakness that can be exploited to cause a denial of service (DoS). | ||||
| CVE-2024-7885 | 1 Redhat | 21 Apache Camel Hawtio, Apache Camel Spring Boot, Build Keycloak and 18 more | 2025-11-07 | 7.5 High |
| A vulnerability was found in Undertow where the ProxyProtocolReadListener reuses the same StringBuilder instance across multiple requests. This issue occurs when the parseProxyProtocolV1 method processes multiple requests on the same HTTP connection. As a result, different requests may share the same StringBuilder instance, potentially leading to information leakage between requests or responses. In some cases, a value from a previous request or response may be erroneously reused, which could lead to unintended data exposure. This issue primarily results in errors and connection termination but creates a risk of data leakage in multi-request environments. | ||||
| CVE-2024-6162 | 1 Redhat | 11 Apache Camel Hawtio, Apache Camel Spring Boot, Build Keycloak and 8 more | 2025-11-07 | 7.5 High |
| A vulnerability was found in Undertow, where URL-encoded request paths can be mishandled during concurrent requests on the AJP listener. This issue arises because the same buffer is used to decode the paths for multiple requests simultaneously, leading to incorrect path information being processed. As a result, the server may attempt to access the wrong path, causing errors such as "404 Not Found" or other application failures. This flaw can potentially lead to a denial of service, as legitimate resources become inaccessible due to the path mix-up. | ||||
| CVE-2024-5971 | 1 Redhat | 12 Apache Camel Hawtio, Apache Camel Spring Boot, Build Keycloak and 9 more | 2025-11-07 | 7.5 High |
| A vulnerability was found in Undertow, where the chunked response hangs after the body was flushed. The response headers and body were sent but the client would continue waiting as Undertow does not send the expected 0\r\n termination of the chunked response. This results in uncontrolled resource consumption, leaving the server side to a denial of service attack. This happens only with Java 17 TLSv1.3 scenarios. | ||||
| CVE-2024-1635 | 2 Netapp, Redhat | 26 Active Iq Unified Manager, Oncommand Workflow Automation, Amq Streams and 23 more | 2025-11-07 | 7.5 High |
| A vulnerability was found in Undertow. This vulnerability impacts a server that supports the wildfly-http-client protocol. Whenever a malicious user opens and closes a connection with the HTTP port of the server and then closes the connection immediately, the server will end with both memory and open file limits exhausted at some point, depending on the amount of memory available. At HTTP upgrade to remoting, the WriteTimeoutStreamSinkConduit leaks connections if RemotingConnection is closed by Remoting ServerConnectionOpenListener. Because the remoting connection originates in Undertow as part of the HTTP upgrade, there is an external layer to the remoting connection. This connection is unaware of the outermost layer when closing the connection during the connection opening procedure. Hence, the Undertow WriteTimeoutStreamSinkConduit is not notified of the closed connection in this scenario. Because WriteTimeoutStreamSinkConduit creates a timeout task, the whole dependency tree leaks via that task, which is added to XNIO WorkerThread. So, the workerThread points to the Undertow conduit, which contains the connections and causes the leak. | ||||
| CVE-2023-6717 | 1 Redhat | 15 Amq Broker, Build Keycloak, Jboss Data Grid and 12 more | 2025-11-07 | 6 Medium |
| A flaw was found in the SAML client registration in Keycloak that could allow an administrator to register malicious JavaScript URIs as Assertion Consumer Service POST Binding URLs (ACS), posing a Cross-Site Scripting (XSS) risk. This issue may allow a malicious admin in one realm or a client with registration access to target users in different realms or applications, executing arbitrary JavaScript in their contexts upon form submission. This can enable unauthorized access and harmful actions, compromising the confidentiality, integrity, and availability of the complete KC instance. | ||||
| CVE-2024-1132 | 1 Redhat | 23 Amq Broker, Build Keycloak, Build Of Keycloak and 20 more | 2025-11-07 | 8.1 High |
| A flaw was found in Keycloak, where it does not properly validate URLs included in a redirect. This issue could allow an attacker to construct a malicious request to bypass validation and access other URLs and sensitive information within the domain or conduct further attacks. This flaw affects any client that utilizes a wildcard in the Valid Redirect URIs field, and requires user interaction within the malicious URL. | ||||
| CVE-2023-5236 | 2 Infinispan, Redhat | 12 Infinispan, Camel Quarkus, Camel Spring Boot and 9 more | 2025-11-07 | 4.4 Medium |
| A flaw was found in Infinispan, which does not detect circular object references when unmarshalling. An authenticated attacker with sufficient permissions could insert a maliciously constructed object into the cache and use it to cause out of memory errors and achieve a denial of service. | ||||
| CVE-2024-3653 | 1 Redhat | 17 Amq Streams, Apache Camel Hawtio, Build Keycloak and 14 more | 2025-11-07 | 5.3 Medium |
| A vulnerability was found in Undertow. This issue requires enabling the learning-push handler in the server's config, which is disabled by default, leaving the maxAge config in the handler unconfigured. The default is -1, which makes the handler vulnerable. If someone overwrites that config, the server is not subject to the attack. The attacker needs to be able to reach the server with a normal HTTP request. | ||||
| CVE-2025-23367 | 1 Redhat | 8 Build Keycloak, Jboss Data Grid, Jboss Enterprise Application Platform and 5 more | 2025-11-07 | 6.5 Medium |
| A flaw was found in the Wildfly Server Role Based Access Control (RBAC) provider. When authorization to control management operations is secured using the Role Based Access Control provider, a user without the required privileges can suspend or resume the server. A user with a Monitor or Auditor role is supposed to have only read access permissions and should not be able to suspend the server. The vulnerability is caused by the Suspend and Resume handlers not performing authorization checks to validate whether the current user has the required permissions to proceed with the action. | ||||
| CVE-2023-5379 | 1 Redhat | 11 Jboss Data Grid, Jboss Enterprise Application Platform, Jboss Enterprise Application Platform Eus and 8 more | 2025-11-07 | 7.5 High |
| A flaw was found in Undertow. When an AJP request is sent that exceeds the max-header-size attribute in ajp-listener, JBoss EAP is marked in an error state by mod_cluster in httpd, causing JBoss EAP to close the TCP connection without returning an AJP response. This happens because mod_proxy_cluster marks the JBoss EAP instance as an error worker when the TCP connection is closed from the backend after sending the AJP request without receiving an AJP response, and stops forwarding. This issue could allow a malicious user could to repeatedly send requests that exceed the max-header-size, causing a Denial of Service (DoS). | ||||
| CVE-2024-1023 | 1 Redhat | 20 A Mq Clients, Amq Broker, Amq Streams and 17 more | 2025-11-07 | 6.5 Medium |
| A vulnerability in the Eclipse Vert.x toolkit results in a memory leak due to using Netty FastThreadLocal data structures. Specifically, when the Vert.x HTTP client establishes connections to different hosts, triggering the memory leak. The leak can be accelerated with intimate runtime knowledge, allowing an attacker to exploit this vulnerability. For instance, a server accepting arbitrary internet addresses could serve as an attack vector by connecting to these addresses, thereby accelerating the memory leak. | ||||
| CVE-2024-1300 | 1 Redhat | 20 A Mq Clients, Amq Broker, Amq Streams and 17 more | 2025-11-07 | 5.4 Medium |
| A vulnerability in the Eclipse Vert.x toolkit causes a memory leak in TCP servers configured with TLS and SNI support. When processing an unknown SNI server name assigned the default certificate instead of a mapped certificate, the SSL context is erroneously cached in the server name map, leading to memory exhaustion. This flaw allows attackers to send TLS client hello messages with fake server names, triggering a JVM out-of-memory error. | ||||
| CVE-2024-11831 | 1 Redhat | 34 Acm, Advanced Cluster Security, Ansible Automation Platform and 31 more | 2025-11-06 | 5.4 Medium |
| A flaw was found in npm-serialize-javascript. The vulnerability occurs because the serialize-javascript module does not properly sanitize certain inputs, such as regex or other JavaScript object types, allowing an attacker to inject malicious code. This code could be executed when deserialized by a web browser, causing Cross-site scripting (XSS) attacks. This issue is critical in environments where serialized data is sent to web clients, potentially compromising the security of the website or web application using this package. | ||||
| CVE-2023-44487 | 32 Akka, Amazon, Apache and 29 more | 367 Http Server, Opensearch Data Prepper, Apisix and 364 more | 2025-11-04 | 7.5 High |
| The HTTP/2 protocol allows a denial of service (server resource consumption) because request cancellation can reset many streams quickly, as exploited in the wild in August through October 2023. | ||||
| CVE-2022-41946 | 3 Debian, Postgresql, Redhat | 10 Debian Linux, Postgresql Jdbc Driver, Camel K and 7 more | 2025-11-03 | 4.7 Medium |
| pgjdbc is an open source postgresql JDBC Driver. In affected versions a prepared statement using either `PreparedStatement.setText(int, InputStream)` or `PreparedStatemet.setBytea(int, InputStream)` will create a temporary file if the InputStream is larger than 2k. This will create a temporary file which is readable by other users on Unix like systems, but not MacOS. On Unix like systems, the system's temporary directory is shared between all users on that system. Because of this, when files and directories are written into this directory they are, by default, readable by other users on that same system. This vulnerability does not allow other users to overwrite the contents of these directories or files. This is purely an information disclosure vulnerability. Because certain JDK file system APIs were only added in JDK 1.7, this this fix is dependent upon the version of the JDK you are using. Java 1.7 and higher users: this vulnerability is fixed in 4.5.0. Java 1.6 and lower users: no patch is available. If you are unable to patch, or are stuck running on Java 1.6, specifying the java.io.tmpdir system environment variable to a directory that is exclusively owned by the executing user will mitigate this vulnerability. | ||||
| CVE-2022-41678 | 2 Apache, Redhat | 4 Activemq, Amq Broker, Jboss Fuse and 1 more | 2025-11-03 | 8.8 High |
| Once an user is authenticated on Jolokia, he can potentially trigger arbitrary code execution. In details, in ActiveMQ configurations, jetty allows org.jolokia.http.AgentServlet to handler request to /api/jolokia org.jolokia.http.HttpRequestHandler#handlePostRequest is able to create JmxRequest through JSONObject. And calls to org.jolokia.http.HttpRequestHandler#executeRequest. Into deeper calling stacks, org.jolokia.handler.ExecHandler#doHandleRequest can be invoked through refection. This could lead to RCE through via various mbeans. One example is unrestricted deserialization in jdk.management.jfr.FlightRecorderMXBeanImpl which exists on Java version above 11. 1 Call newRecording. 2 Call setConfiguration. And a webshell data hides in it. 3 Call startRecording. 4 Call copyTo method. The webshell will be written to a .jsp file. The mitigation is to restrict (by default) the actions authorized on Jolokia, or disable Jolokia. A more restrictive Jolokia configuration has been defined in default ActiveMQ distribution. We encourage users to upgrade to ActiveMQ distributions version including updated Jolokia configuration: 5.16.6, 5.17.4, 5.18.0, 6.0.0. | ||||
| CVE-2022-31197 | 4 Debian, Fedoraproject, Postgresql and 1 more | 6 Debian Linux, Fedora, Postgresql Jdbc Driver and 3 more | 2025-11-03 | 7.1 High |
| PostgreSQL JDBC Driver (PgJDBC for short) allows Java programs to connect to a PostgreSQL database using standard, database independent Java code. The PGJDBC implementation of the `java.sql.ResultRow.refreshRow()` method is not performing escaping of column names so a malicious column name that contains a statement terminator, e.g. `;`, could lead to SQL injection. This could lead to executing additional SQL commands as the application's JDBC user. User applications that do not invoke the `ResultSet.refreshRow()` method are not impacted. User application that do invoke that method are impacted if the underlying database that they are querying via their JDBC application may be under the control of an attacker. The attack requires the attacker to trick the user into executing SQL against a table name who's column names would contain the malicious SQL and subsequently invoke the `refreshRow()` method on the ResultSet. Note that the application's JDBC user and the schema owner need not be the same. A JDBC application that executes as a privileged user querying database schemas owned by potentially malicious less-privileged users would be vulnerable. In that situation it may be possible for the malicious user to craft a schema that causes the application to execute commands as the privileged user. Patched versions will be released as `42.2.26` and `42.4.1`. Users are advised to upgrade. There are no known workarounds for this issue. | ||||